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Abstract

We develop a method to estimate the cost of capital using credit registry microdata,

and apply it to study capital allocation efficiency in the United States. Our measure

incorporates the contractual interest rate, expected default probability, recovery rate,

and expectations of future rates. We estimate three distinct rates: (i) the lender’s

discount rate, (ii) the firm’s cost of capital, and (iii) the social cost of capital. We

derive a sufficient statistic for misallocation based on the first and second moments

of the social cost of capital. Dispersion in this rate captures both heterogeneity in

lender discounting and the presence of financial frictions. Normal times feature modest

amounts of misallocation, corresponding to an output loss of 0.9%, but this increased

to 1.8% during the 2020-21 period.
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1 Introduction

How much does it cost a firm to obtain capital? Economic models often simplify by

assuming that all firms can borrow in a competitive market at a common rate. In reality,

however, the cost of capital varies significantly across firms. This variation stems not only

from differences in contractual interest rates but also from firm-specific factors such as de-

fault probabilities, loan terms, and lender cost of funds. Such heterogeneity in the cost of

capital has profound implications: it can distort the allocation of capital across firms, leading

to inefficiencies in economic output (Gilchrist et al., 2013; Hsieh and Klenow, 2009). Un-

derstanding these inefficiencies is critical for policymakers and researchers seeking to design

effective financial and economic policies.

This paper makes two contributions to the literature. First, we develop a novel method

that leverages a dynamic corporate finance model and uses credit registry microdata to

measure the dispersion of the cost of capital. This method allows us to quantify how these

variations contribute to capital misallocation. The theory implies a sufficient statistic for

misallocation that can be directly measured with credit registry data. Second, we apply

this method to U.S. data and uncover two primary insights. While the cost of capital is

heterogeneous across firms, the implied misallocation is small. This misallocation, however,

exhibits a substantial amount of variation over time, and, in particular, it doubled in 2020-21,

around the COVID-19 pandemic.

The method we develop offers several advantages. Unlike traditional approaches that

require strong assumptions about production functions as well as detailed data on firms

financials such as sales or value added, our approach relies on credit registry data that is

commonly collected by financial regulators around the developed and developing world, and

uses sufficient statistics derived directly from moments of the data. This not only simplifies

implementation but also provides more robust identification of the sources of misallocation

without heavy reliance on calibration assumptions.

Section 2 describes the dynamic corporate finance model that provides the foundation
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for the derivation of the sufficient statistic for misallocation and our empirical measurement

of the cost of capital. The model captures firm-level borrowing, investment, and default de-

cisions in the presence of idiosyncratic shocks, such as productivity fluctuations or stochastic

fixed operating costs. Each firm borrows from a single lender who discounts future cash flows

at a match-specific rate ρ. While we refer to ρ as the lender’s discount rate, it more broadly

reflects variation in loan pricing that is not fully explained by observable loan terms. Using

the firm’s optimality conditions, we show how ρ influences the firm’s internal cost of capital,

which in turn determines its expected marginal revenue product of capital. This link forms

the basis for our measure of misallocation.

In Section 3, we theoretically map heterogeneity in the cost of capital to economic effi-

ciency costs. We compare the decentralized equilibrium to the allocation chosen by a planner

who reallocates capital across firms to maximize aggregate output, subject to the same ag-

gregate capital stock and taking firms’ default decisions as given. We define the social cost

of capital, which is the marginal value of allocating an extra unit of capital for each firm

from the point of view of the planner. We show that this measure is approximately equal

to the sum of two terms: the lender’s discount rate plus a term that reflects financial fric-

tions related to limited liability and recovery in case of default in the spirit of Cooley and

Quadrini (2001). At the optimum, the planner would like to equate the social cost of capital

across firms. This insight allows us to derive a sufficient statistic for the output loss from

misallocation that depends only on the mean and variance of the social cost of capital. This

statistic is robust to firm-level heterogeneity in production technologies and does not rely on

structural estimation.

Section 4 describes how we use credit registry data for measurement. We define the

lender’s discount rate as the internal rate of return that satisfies the lender’s break-even

condition, accounting for both repayment probabilities and expected losses in default. To

compute this rate at the firm level, we require loan-level data on contractual interest rates,

loan maturities, borrower-specific probabilities of default, and loss given default (LGD), as

well as the expected inflation term structure. In the case of floating-rate loans, we also
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need expectations for forward benchmark interest rates. Using these variables as well as

the equations of the model, we estimate three distinct rates: the lender’s discount rate, the

firm’s cost of capital, and the social cost of capital. We then apply the sufficient statistic to

the social cost of capital to estimate the output loss from misallocation.

Section 5 presents our empirical findings. Using data from over sixty thousand loans

originated between 2014 and 2024, we show that the average measures of cost of capital

closely track the five-year U.S. Treasury rate. We estimate three distinct rates. First, the

lender’s discount rate is specific to each borrower-lender pair and captures the efficiency of

the credit match. It has a mean of 1.9% and a standard deviation of 1.6% over the period

in analysis. Second, the firm’s cost of capital—defined as the expected payment by the firm

conditional on no default—has a mean of 0.9% and a standard deviation of 2.8%. This rate

is lower than the lender’s discount rate because the firm does not internalize recoveries in the

case of default, unlike the lender. Finally, the social cost of capital reflects the total return

on capital from a social perspective, incorporating expected recovery in the event of default.

It has a mean of 1.7% and a variance of 1.8%. For comparison, the average five-year U.S.

Treasury rate over this period was 0.4%, in real terms.

At the optimum, the planner seeks to equalize the social cost of capital across firms. Our

sufficient statistic provides a mapping from the variance of the social cost of capital—1.8% on

average—to output losses due to misallocation. We estimate that, under normal conditions,

the implied output loss from capital misallocation is modest, around 0.9%. However, this

loss increased significantly during the COVID-19 pandemic (2020–2021), rising to 1.8% at

its peak.

We investigate the drivers of this increase in misallocation. First, we show that the

social cost of capital can be decomposed into the sum of two terms: one that reflects lender

discount rates and another that reflects financial frictions related to default (limited liability

and recovery rates). We then show that the increase in misallocation was driven by rising

dispersion in lender discount rates, rather than by a worsening of the financial frictions

term. Recall that the lender discount rate reflects fluctuations in pricing that do not reflect
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fundamental observable characteristics of the loan. We find that this increase dispersion

in lender discount rates was driven by an increase in the dispersion of expected losses (the

product of the probability of default and loss given default) that was not reflected in increased

dispersion in contractual interest rates. Thus interest rates did not “move enough” to reflect

fluctuations in loan-level risk, which led to dispersion in discount rates and thus inefficient

allocation of credit.

Finally, we show that our measure of social cost of capital is correlated with measures of

ARPK that are commonly used in the literature. The social cost of capital tends to display

stronger correlation with ARPK measures that are based on value added, rather than sales

or measures of earnings. The social cost of capital implies lower overall levels of capital

misallocation than those that would be implied by the ARPK-based measures.

Literature Review. Our paper contributes to the broader literature on measuring misal-

location. Following seminal work by Restuccia and Rogerson (2008) and Hsieh and Klenow

(2009), there has been significant progress in quantifying misallocation across various settings

(see Hopenhayn (2014) and Restuccia and Rogerson (2017) for comprehensive reviews). A

key challenge in this literature is measuring misallocation without imposing strong assump-

tions on firms’ production technologies. Haltiwanger et al. (2018) emphasize that standard

approaches are only valid under restrictive assumptions, such as a common Cobb-Douglas

production function with firm-specific productivity shifters.

One strand of the literature focuses on specific sources of distortions. For instance,

Kaymak and Schott (2024) study corporate tax asymmetries and find that heterogeneity in

effective marginal tax rates can distort capital and labor allocation, reducing aggregate pro-

ductivity. Alternatively, recent work has sought to directly estimate marginal products using

(quasi-)experimental variation, allowing for richer production heterogeneity (e.g., (Carrillo

et al., 2023; Hughes and Majerovitz, 2025). However, such approaches have only been applied

in narrow contexts where experimental variation is available.

Our paper measures heterogeneity in the marginal product of capital by exploiting firm-
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level variation in the cost of capital, allowing us to assess misallocation across a much

broader set of firms while remaining agnostic to functional form assumptions. Closest to

our approach, Gilchrist et al. (2013) develop a tractable framework to quantify misallocation

arising from dispersion in borrowing costs. We emphasize two key differences. First, a

portion of the credit spread dispersion in Gilchrist et al. (2013) reflects variation in default

probabilities and recovery rates, whereas our framework explicitly models corporate default.

Second, their analysis relies on corporate bond data, which restricts attention to large firms.

In contrast, we use bank loan data that encompasses a significantly wider range of firms,

including small, medium, and large-sized enterprises.

We also contribute to a literature that estimates heterogeneity across firms in interest

rates and/or the cost of capital. Banerjee and Duflo (2005) summarize early evidence for

substantial heterogeneity in interest rates across borrowers in developing countries, arguing

that this heterogeneity implies significant misallocation. Recent work by Gormsen and Huber

(2023, 2024) analyzes transcripts of firm earnings calls to extract information on the discount

rates and cost of capital that firms use. Cavalcanti et al. (2024) use credit registry data to

study heterogeneity in interest rates for borrowing firms in Brazil. They find substantial

heterogeneity across firms and use a dynamic structural model with financial frictions to

infer the cost of capital. This paper also builds on the findings of Faria-e-Castro et al.

(2024), who analyze the dispersion in borrowing rates for U.S. firms using a comprehensive

database of loans and bonds. Their study highlights significant heterogeneity in borrowing

costs, even within firms, and demonstrates the persistent impact of borrowing costs on firm-

level investment and borrowing behaviors.

Relative to this previous literature, our paper makes two key methodological contribu-

tions. First, we provide a method to estimate a firm’s cost of capital from credit registry

data. This is not as simple as measuring the interest rate because the cost of capital depends

on the ex-ante repayment probability and expected losses given default. Second, we show

how to use moments of the distribution of the cost of capital to develop sufficient statis-

tics that allow us to measure the cost of misallocation non-parametrically in a dynamic,
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stochastic model.

2 Corporate Finance Model

This section outlines the core components of the model, which we use as a measurement

device. We demonstrate how the model’s optimality conditions can be derived and integrated

with microdata on loan characteristics to estimate the lender’s discount rate and the firm’s

cost of capital. These rates are used to infer the firm’s expected marginal product of capital,

which is a key input for our measure of misallocation.

Time is discrete and indexed by t = 0, 1, . . .. The economy is populated by firms that

borrow and invest, and by lenders who finance those firms. There is a unit mass of firms,

indexed by i, who exit over time. We assume that every firm that exits is replaced by a

firm with identical characteristics that does not produce in the current period, such that

the mass of firms is constant and equal to 1. Each firm is matched with a lender. There

is no aggregate risk. We now describe the decision problem of the borrowing firm, and its

interaction with the lenders.

Borrowers. The borrowers in the model are firms operating in the nonfinancial sector.

These firms operate under limited liability and make decisions regarding production, invest-

ment, and borrowing. Output (net of non-capital costs) is generated using a production

function f(ki, zi), where ki represents capital and zi denotes a vector of shocks that affect

firm net output. We allow zi to be a vector; this accommodates productivity shocks, stochas-

tic fixed costs, as well as rich heterogeneity in the production function. To sustain or expand

their operations, firms invest in capital and issue long-term defaultable debt bi. In the event

of default, lenders recover an amount φi(ki) that depends on the stock of firm assets ki.

Lenders. Lenders finance firms, with each firm matched to a single lender. Upon matching,

the borrower-lender pair draws a realization of ρi, which represents the discount rate that the

7



lender uses to price debt.1 For this reason, we refer to ρi as the lender’s discount rate. Loans

are priced so that lenders break even using ρi as their discount rate, taking into account

firm-specific characteristics and risk assessments.

Firm’s Problem. Firms determine their investment and borrowing strategies to maximize

their value, taking into account the possibility of future default. The value of repayment for

a firm is expressed as:

Vi(ki, bi, zi) = max
k′i,b

′
i

π(ki, bi, zi, k
′
i, b

′
i) + βE [max {Vi(k

′
i, b

′
i, z

′
i), 0} |zi] , (1)

where π(ki, bi, zi, k
′
i, b

′
i) denotes the firm’s profit function, and β represents the discount

factor. The profit function captures the firm’s net return from production and financing

decisions:

π(ki, bi, zi, k
′
i, b

′
i) = f(ki, zi) + (1− δ)ki − k′

i − θibi +Qi(k
′
i, b

′
i, zi)[b

′
i − (1− θi)bi].

Here, f(ki, zi) represents the firm’s net output as a function of capital ki and productivity

zi, (1− δ)ki accounts for the depreciated value of current capital, and k′
i denotes new capital

investment. We model long-term debt as a geometrically decaying perpetuity with rate θi.

Thus θibi reflects repayment on existing debt, while Qi(k
′
i, b

′
i, zi) captures the price of newly

issued debt, with b′i − (1− θi)bi representing the net new borrowing.

Debt Pricing. Lenders are risk-neutral and price debt based on their cost of capital, ρi.

The price of debt Qi(k
′
i, b

′
i, zi) is determined as:

Qi(k
′
i, b

′
i, zi) =

E
{
Pi(k

′
i, b

′
i, z

′
i) [θi + (1− θi)Qi(k

′′
i , b

′′
i , z

′
i)] + (1− Pi(k

′
i, b

′
i, z

′
i))

φi(k
′
i)

b′i

∣∣∣ k′
i, b

′
i, zi

}
1 + ρi

,

(2)

where Pi(k
′
i, b

′
i, z

′
i) is an indicator function that is equal to 1 if the firm repays, and 0 other-

wise, and φi(k
′
i)/b

′
i is the recovery rate in the event of default, per dollar lent.

1This variable captures both lender- and borrower-specific factors that lie outside the scope of the model,
such as lender financing costs, risk appetite, or the dynamics of relationship lending. While we do not provide
a specific microfoundation for the heterogeneity in ρi, we focus on analyzing its implications.
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Solution to the Firm’s Problem. The solution to the firm’s problem in (1) is charac-

terized by two first-order conditions, with respect to capital k′
i and debt b′i:

[k′
i] : − 1 +

∂Qi(k
′
i, b

′
i, zi)

∂k′
i

[b′i − (1− θi)bi] + βE {Pi(k
′
i, b

′
i, z

′
i)[fk(k

′
i, z

′
i) + 1− δ]| zi} = 0

[b′i] :
∂Qi(k

′
i, b

′
i, zi)

∂b′i
[b′i − (1− θi)bi] +Qi(k

′
i, b

′
i, zi)− βE {Pi(k

′
i, b

′
i, z

′
i)[θi + (1− θi)Qi(k

′′
i , b

′′
i , z

′
i)]| zi} = 0

where we use the envelope conditions ∂Vi

∂ki
= fk(ki, zi) + 1 − δ and ∂Vi

∂bi
= −[θi + (1 − θi)Qi].

Throughout, we assume that the firm’s discount factor β is low enough such that the firm

chooses an interior solution for debt.2 Simplifying notation, so that P ′
i is a shorthand for

Pi(k
′
i, b

′
i, z

′
i), we can combine the two first-order conditions conditions to write:

E [P ′
i(θi + (1− θi)Q

′
i)| zi]

Qi︸ ︷︷ ︸
(1)

×

1− ∂Qi

∂k′i
[b′i − (1− θi)bi]

1 + ∂Qi

∂b′i

[b′i−(1−θi)bi]

Qi


︸ ︷︷ ︸

(2)

= E [P ′
i(fk(k

′
i, z

′
i) + 1− δ)| zi]︸ ︷︷ ︸
(3)

(3)

Equation (3) is going to be key to our analysis. It relates a measure of the firm’s perceived

marginal cost of funds (first term), multiplied by an adjustment factor that reflects the

impact of firm decisions on its price of debt (second term), to the firm’s expected marginal

product of capital (third term). Our empirical strategy is based on measuring the first term

in the data, and using it to infer the third term.

The Firm’s Cost of Capital. We define the firm’s cost of capital, rfirmi , as the ra-

tio of the expected value of future repayments adjusted for the probability of repayment,

E [P ′
i(θi + (1− θi)Q

′
i)], relative to the current price of borrowing, Qi.3 It corresponds to the

first term in equation (3). The firm’s cost of capital is the expected implicit interest rate

that it pays on its debt. Formally, it is expressed as:

1 + rfirmi =
E [P ′

i(θi + (1− θi)Q
′
i)| k′

i, b
′
i, zi]

Qi

. (4)

This equation captures how the firm’s borrowing cost depends on repayment probabilities

and debt maturity. The firm’s cost of capital is one of the key components of the firm’s first
2β < 1

1+ρi
is sufficient but not necessary, since lenders value recovery in default states.

3We use P ′
i as a shorthand for Pi(k

′
i, b

′
i, z

′
i), and the same for Q′

i.
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order condition with respect to capital. In what follows, we show how to measure rfirmi in

the data, and this will give us information about the marginal revenue product of capital.

Proposition 1 characterizes the firm’s cost of capital. All proofs are in Appendix A.

Proposition 1 (Firm’s Cost of Capital). The firm’s cost of capital can be written as:

1 + rfirmi =
1 + ρi
1 + Λi

, Λi :=
E [ (1− P ′

i)φi(k
′
i)/b

′
i| k′

i, b
′
i, zi]

E [P ′
i (θ + (1− θi)Q′

i)| k′
i, b

′
i, zi]

.

The term Λi represents the wedge between the borrower’s cost of capital, rfirmi , and the

lender’s discount rate, ρi. This wedge arises due to lender recovery in the event of default.

When there is no recovery (φi = 0), the wedge disappears (Λi = 0), and the firm’s cost of

capital equals the lender’s discount rate (rfirmi = ρi). On the other hand, when the lender

can recover some value after default (φi > 0), the wedge becomes positive (Λi > 0), and

the firm’s cost of capital rfirmi is lower than ρi. This reduction in perceived borrowing cost

occurs because the borrower only accounts for states where repayment occurs. Thus the firm

expects to pay a lower rate than the lender expects to recover.

Marginal Revenue Product of Capital. The firm’s investment decision follows a stan-

dard first-order condition, which equates the firm’s cost of capital with its expected marginal

revenue product of capital. Combining equation (3) with the definition of firm cost of capital

in (4), we obtain:4

(1 + rfirmi )Mi = E[P ′
i(fk(k

′
i, z

′
i) + 1− δ)| k′

i, b
′
i, zi]. (5)

The left-hand-side of equation (5) represents the cost of raising more capital. This

includes the firm’s cost of capital, rfirmi , adjusted by the price feedback multiplier, Mi,

which captures the effect of the firm’s borrowing and investment on the price of debt. The

price feedback multiplier Mi is the second term in equation (3). In order to map this object
4We provide a derivation of this equation in Appendix A.
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to the data, it is useful to rewrite it as:

Mi :=
1− γi × Qi·b′i

k′i
× ∂ logQi

∂ log k′i

1 + γi × ∂ logQi

∂ log b′i

, γi :=
b′i − (1− θi)bi

b′i
,

where γi measures the share of debt tomorrow that will be newly purchased. The numerator

of Mi reflects the feedback from changes in capital on the price of debt, while the denomi-

nator incorporates the feedback from changes in borrowing. Together, these terms provide

a comprehensive characterization of how price dynamics influence the firm’s cost of capital.

The right-hand-side of equation (5) represents the expected marginal revenue product of

capital. This term includes the marginal productivity of capital, fk(k′
i, z

′
i), and the depreci-

ation factor, 1− δ, weighted by the states of the world in which the firm repays, P ′
i.

3 Measuring Misallocation

When financial markets are efficient, all firms face the same cost of capital. However, in

the data we find that the cost of capital varies across firms. How does this inefficiency in

financial markets translate into an inefficiency in the real economy? We now consider the

aggregation of output and investment across firms in order to study the steady-state costs

of misallocation arising from dispersion in the cost of capital.

3.1 The Aggregate Economy and Welfare

We begin by setting up the aggregate environment in order to study both the decentral-

ized equilibrium and the planner’s problem. The firm’s problem will be the same as before.

There is no aggregate risk, so aggregates are not stochastic. Firms make undifferentiated

products and take the price of their output as given. There is some initial stock of capital

K0, and future capital depends on investment and depreciation through the standard law of

motion.

We introduce the notation ωi,t, which is equal to one if firm i is still operating at time t,
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and zero if it has exited. Note that Et−1 [ωi,t] = Pi,t. Aggregate output is given by:

Yt =

∫ 1

0

ωi,t · f (ki,t, zi,t)︸ ︷︷ ︸
Output if Operates

− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))︸ ︷︷ ︸
Losses if Defaults

di (6)

Note that we have defined output, Yt, so that it includes both the firm’s output in the event

of production, f (ki,t, zi,t), and the losses from liquidation, (1− δ) ki,t − φi (ki,t), in the event

of default. This allows us to define aggregate investment simply:

It = Kt+1 − (1− δ)Kt (7)

Finally, aggregate capital is given by:

Kt =

∫ 1

0

ki,tdi (8)

The planner wishes to maximize welfare, U , controlling each firm’s capital and exit

decision. However, the planner is subject to the same information constraints as the firm:

ki,t must be decided in period t− 1, without yet knowing the productivity or operating costs

that will prevail in that period. Exit decisions are made after zi,t is revealed, but with the

values for future periods still unknown.

There is a representative household that obtains utility from consumption: we abstract

from inequality to focus on productive efficiency. The household’s utility is additively sepa-

rable over time. Consumption is equal to aggregate output minus investment. Thus, welfare

in this economy is given by:

U =
∞∑
t=0

βt · u (Yt − It)

where β is the household’s discount rate and u is the utility it gets from consumption.
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3.2 The Planner’s Problem

Let St
i := {zis}ts=0 denote the entire history of states, through period t.5 Define St :=

{St
i}i∈[0,1] as the collection of all firms’ histories. We can use this notation to set up the

appropriate constraints to the planner’s problem: the planner must set ki,t as a function of

St−1, and ωi,t as a function of St.6 The planner’s problem is:

U∗ = max{
{ki,t(St−1),ωi,t(St)}i∈[0,1]

}∞

t=1

∞∑
t=0

βt · u (Yt − It)

s.t.

ωi,t

(
St
)
∈ {0, 1} ∀i

ωi,t+1

(
St+1

)
≤ ωi,t

(
St
)
∀St ⊂ St+1,∀i

and Equations (6), (7), and (8) hold

where the inequality ωi,t+1 (S
t+1) ≤ ωi,t (S

t) notes that if the firm exits, it cannot subse-

quently re-enter. In period t = 0, all firms operate and capital is set exogenously.

We can rewrite the planner’s problem as a nested maximization problem, to isolate the

intensive-margin choice of capital, holding aggregate capital and the extensive margin fixed.

Note that It = Kt+1 − (1− δ)Kt, and so it depends only on aggregate capital (not the

allocation across firms). We can thus rewrite the planner’s problem in the following nested

form:

U∗ = max{
Kt,{ωi,t(St)}i∈[0,1]

}∞

t=1

∞∑
t=0

βt · u

 max{
{ki,t(St−1)}i∈[0,1]

}∞

t=1

Yt

− It


with the same constraints as before.

5Note that the only shock in our model is zi,t, so this is the full history of states.
6In practice, since there is no aggregate risk, the planner will only need to use the individual firm’s state

histories to make decisions.

13



3.3 The Cost of Misallocation

We can now turn our attention to the inner problem. Note that the inner problem is

separable across time periods, allowing us to separate it into a sequence of static problems.

We focus on the cost of misallocation in terms of output. Simplifying our notation, we can

rewrite the problem as follows:

Y ∗
t

(
Kt, {ωi,t}i∈[0,1]

)
= max

{ki,t}i∈[0,1]

∫ 1

0

Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))] di

s.t.

Kt =

∫ 1

0

ki,tdi

This problem is now a special case of the environment in Hughes and Majerovitz (2025).

We can use their main proposition to derive the cost of misallocation, up to a second-order

approximation. Define

gi (ki) := Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))] .

Proposition 2 shows the cost of intensive-margin misallocation.

Proposition 2 ((Special Case of Hughes and Majerovitz (2025))). The cost of intensive-

margin misallocation is given by

log Y ∗
t

(
Kt,
{
ωi,t

(
St
)}

i∈[0,1]

)
− log Yt︸ ︷︷ ︸

Cost of Intensive-Margin Misallocation

≈ 1

2
· Egi(ki) [Ei]︸ ︷︷ ︸

Sales-Weighted Elasticity

·Vargi(ki)Ei
(
log

(
∂

∂ki,t
gi (ki)

))
︸ ︷︷ ︸
Weighted Variance of Log Expected MPK

where gi (ki) is the expected output of the firm as a function of ki, Ei is the elasticity of

expected output with respect to the cost of capital, Egi(ki) [·] denotes the weighted average,

weighting by gi (ki), Vargi(ki)Ei (·) denotes the weighted variance, weighting by gi (ki) Ei. All

moments are computed for the set of firms that are operating at time t− 1. The formulas for

the expected output of the firm and the elasticity of expected output with respect to the cost
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of capital are given by:

gi (ki) = Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))]

Ei = −

(
∂
∂ki

gi (ki)
)2

gi (ki) · ∂2

(∂ki)
2 gi (ki)

Note that in a Cobb-Douglas setting, with f (k, z) = z · kα and no default, the elasticity

simplifies to E = α
1−α

. In our quantitative analysis, we will calibrate E = 1
2
, consistent

with α = 1
3
. Moreover, note that although the proposition above provides a second-order

approximation, it becomes exact in a setting where production is Cobb-Douglas and where

productivity and distortions are jointly log-normal (the weights also fall out in that special

case).

3.4 The Social Cost of Capital

We have already introduced the notion of the lender’s discount rate, ρ, and the firm’s

cost of capital, rfirm. We now introduce the notion of the social cost of capital, rsocial. This

will reflect the social marginal product of capital at firm i. We define rsociali,t as the derivative

of aggregate consumption (Yt − It) at time t + 1 with respect to kit+1, taking expectations

at time t (when the investment decision is made).7 We have:

rsociali,t :=
∂Et [Yt+1 − It+1]

∂ki,t+1

= Et [P i,t+1 (fk (ki,t+1; zi,t+1) + 1− δ)] + (1− P i,t+1) · φ′
i (ki,t+1)

The social cost of capital for firm i is the shadow value for the planner of allocating an

extra unit of capital to that firm. Combining this with the firm’s first-order condition for

investment in Equation (5) yields:

1 + rsociali,t =
(
1 + rfirmi,t

)
Mi,t + (1− P i,t+1) · φ′

i (ki,t+1) (9)

7Proposition 2 is in terms of gross output, rather than consumption. Nevertheless, we define rsocial in
this way to parallel our definitions of ρ and rfirm.
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Note that 1+ rsociali,t−1 = ∂
∂ki

gi (ki)+1− δ. This will allow us to use the distribution of rsocial to

measure the cost of misallocation. When we bring this result to the data, we will focus on

measuring the variance of rsocial, and use standard values to calibrate E . Moreover, we will

make two further simplifying assumptions. First, we will focus on the unweighted variance,

since the weights are difficult to observe in practice. Second, we will use the log-normal

approximation Var
(
log
(
rsociali,t−1 + δ

))
≈ log

(
1 +

Var
(
rsociali,t−1 +δ

)
E
[
rsociali,t−1 +δ

]2
)

To measure misallocation in our data, we combine this with our derivation of rsocial to

yield the following corollary:

Corollary 1. Assume that
(
rsociali,t−1 + δ

)
is log-normally distributed, and also assume that

weighted moments can be replaced with unweighted moments. The cost of intensive-margin

misallocation is given by

log Y ∗
t

(
Kt,
{
ωi,t

(
St
)}

i∈[0,1]

)
− log Yt

≈ 1

2
· E · log

(
1 +

Var
(
rsociali,t−1

)
E
[
rsociali,t−1 + δ

]2
)

This corollary allows us to connect dispersion in rsocial, an object that we will be able

to measure in the microdata, with the cost of intensive-margin misallocation of capital.

Intuitively, the planner would like to equalize the shadow value of capital across all firms:

this would eliminate dispersion in the social return of capital and result in zero misallocation.

We next turn to how to measure ρ, rfirm, and rsocial using credit registry data.

4 Empirical Methodology

This section describes the main data sources that we use, as well as the procedures we

follow to map model objects to the data in order to estimate the three rates: the lender

discount rate, ρ, the firm’s cost of capital, rfirm, and the social cost of capital, rsocial.
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4.1 Data Sources

Our main data source is the Schedule H.1 of the FR Y-14Q dataset (Y-14 for short).

This is a quarterly regulatory dataset maintained by the Federal Reserve for stress testing

purposes, which contains information on individual loan facilities held in the books of the

top 30 to 40 bank holding companies (BHCs) in the US. The Y-14 includes all loan facilities

exceeding $1 million and we consider data in the period ranging from 2014Q4 to 2024Q4.

Importantly for the purposes of our analysis, the Y-14 contains detailed characteristics of

credit facilities such as facility size, origination date and maturity, interest rate or spread,

interest rate variability, and the type of loan. Additionally, the Y-14 also covers BHC’s risk

assessments for each borrower, which include estimates for the 1-year probability of default

and loss given default. The probability of default is typically estimated using internal default

models that have to be approved by regulators. While there is scope for some discretion in

the assignment of these default probabilities (Plosser and Santos, 2018), these models have

been subject to standardized guidelines following Basel II (BCBS, 2001). We focus on term

loans issued to non-governmental and nonfinancial companies based in the US. Our unit of

observation is a loan origination. We do not include credit lines due to lack of information

about the fee structure, which would be needed to price these facilities. Appendix B contains

a detailed description of the data cleaning procedure and sample restrictions.

In terms of coverage, Faria-e-Castro et al. (2024) show that the FR Y-14Q Schedule H.1

accounts for 91% of Commercial & Industrial lending undertaken by the 25 largest banks

in the US (FRED mnemonic: CIBOARD), and 55% of all Commercial & Industrial lending

undertaken by all commercial banks in the US (FRED mnemonic: BUSLOANS). Our focus

in term loans and relatively stringent cleaning procedures leave us with a total of 65,284

loans.
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4.2 Mapping the Model to the Data

An important difference between the model and the data is the payment structure of

loans. In the model, for tractability, we assume that firms borrow in long-term debt that

is modeled as a perpetuity with geometrically decaying coupons. In the data, on the other

hand, we focus our analysis on term loans with a fixed maturity. This section shows how we

map model objects to the data, and how we exploit the Y-14 data to retrieve estimates of

the lender’s discount rate, ρ, the firm’s cost of capital, rfirm, and the social cost of capital,

rsocial.

Let (i, t) denote a term loan originated at period t. The loan has principal value Bi,t, ma-

turity Ti,t, payment schedule {Di,t,s}
Ti,t

s=1, repayment probability Pi,t assumed to be constant

over time, and loss given default LGDi,t, also constant over time. The break-even condition

at origination for a lender with discount rate ρi,t is given by:

Bi,t = Et

Ti,t∑
s=1

[
P s
i,t ·Di,t,s + P s−1

i,t · (1− Pi,t) · (1− LGDi,t) ·Bi,t

(1 + ρi,t)
s · Πt,s

]
,

where Πt,s ≡
∏s

j=0(1 + πt+j) is the gross cumulative inflation rate from loan origination at

period t through s. The lender forms expectations over two types of risks. On one hand, there

is idiosyncratic loan-level default risk: at each period s, the loan repays with probability Pi,t,

in which case the lender earns the payment Di,t,s, or it defaults with probability 1− Pi,t, in

which case the lender earns the principal reduced by the loss given default, (1−LGDi,t)Bi,t.

On the other hand, the payments themselves are risky due to aggregate uncertainty, both

due to inflation realized between origination and the period the payment is received Πt,s and,

in the case of floating rate loans, to fluctuations in the underlying reference rate.

Assume now that the loan is a non-amortizing term loan, with each payment consisting

of interest over the life of the loan, and the final payment consisting of a lump-sum principal

repayment. Thus Di,t,s = ri,t,s · Bi,t for s < Ti,t and Di,t,Ti,t
= (1 + ri,t,Ti,t

)Bi,t. The interest

rate ri,t,s is either a constant number, in the case of fixed-rate loans, or a fixed spread over

a floating benchmark rate for floating rate loans. We can then rewrite the approximate
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break-even condition at origination as:8

1 =

Ti,t∑
s=1

[
P s
i,t · Et (ri,t,s) + P s−1

i,t · (1− Pi,t) · (1− LGDi,t)

(1 + ρi,t)
s · Et(Πt,s)

]
+

P
Ti,t

i,t

(1 + ρi,t)
Ti,t · Et(Πt,Ti,t

)
, (10)

This equation balances the present value of expected payments from the borrower against

the lender’s opportunity cost, ensuring that the lender breaks even. For a fixed-rate term

loan, data on (Pi,t, LGDi,t, Ti,t, ri,t, {Et(Πt,s)}
Ti,t

s=1) allows us to solve this equation for the

match-specific lender’s discount rate ρi,t.

Floating rate loans. The data contains both fixed and floating rate loans. To estimate ρi,t
for floating rate loans, it is necessary to obtain estimates of Et (ri,t,s), the expected interest

rate. Floating rate loans typically charge a reference rate plus a spread. For our analysis, we

use smoothed daily yield curve estimates provided by the Federal Reserve Board, based on

the methodology described in Gürkaynak et al. (2007). Under the expectations hypothesis,

long-term interest rates are assumed to reflect the market’s expectations of future short-term

rates. For each floating rate loan, we compute the sequence of forward short-term interest

rates at the date of origination, and add the (fixed) loan spread to obtain a sequence of

interest rates that are used to price that loan. Using this framework, we back out Et (ri,t,s)

for each loan by combining the treasury forward rate with the loan’s spread.9 It is worth

noting majority of floating rate loans in our sample are indexed to the LIBOR/SOFR rather

than Treasury rates. However, for the period in analysis, the spread between the SOFR and

short-term Treasury rates is negligible. In the absence of readily available forward curve

estimates for the LIBOR or SOFR, we treat them as identical to the Treasury curve.
8This is an approximation, as we abstract from the covariance between the expected floating rate and

expected inflation, and from the Jensen’s inequality term that arises because inflation appears in the de-
nominator. Accounting for these terms would significantly complicate the estimation ρi,t, as it would require
information about the expected term structure of the covariance between reference rates and inflation.

9More specifically, the estimate for the reference rate n years ahead at time t is given by ft(n, 0) =
β0 + β1 exp(−n/τ1)+ β2(n/τ1) exp(−n/τ1)+ β3(n/τ2) exp(−n/τ2) (equation 21 in Gürkaynak et al. (2007)),
where estimates for (β1, β2, β3τ1, τ2) at each date are regularly updated by the Board of Governors of the
Federal Reserve and published at https://www.federalreserve.gov/data/nominal-yield-curve.htm.
We compute the sequence of forward rates at loan origination, and add the fixed spread to obtain an
estimate for the interest rate at each repayment point in time.
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Interpreting loan values and loss given default. How should loan values in the data

map to our model? It is straightforward to map between the model and data, but only at

loan origination. A firm that sells debt for the first time receives Q·b′ in exchange. Thus, loan

value recorded at origination corresponds to Q · b′ in the model. Another important variable

from the data is the expected loss given default (LGD), which is given as a percentage. At

origination, we interpret LGD as the expected losses relative to the loan’s book value, so

that 1− LGD = φ(k′)/(Q · b′).

After origination, banks do not update loan values on the books to reflect changes in

market prices. Instead, they use historical-cost accounting, recording loans at their original

value and adjusting over time based on the stated interest rate and repayment schedule

(Begenau et al., Forthcoming). As a result, observed loan values after origination no longer

correspond to the market value of debt, Qt · bt+1. For this reason, we focus only on newly

originated loans.

Lender’s discount rate. For each loan origination, the lender’s discount rate ρi,t can be

estimated by numerically solving equation (10). This requires credit registry data on: i) loan

maturity Ti,t, ii) repayment probability Pi,t, iii) loss given default LGDi,t, and iv) interest

rate or spread. For floating rate loans, data on spreads is combined with the Treasury forward

curve to obtain Et(ri,t,s). Finally, we compute {EtΠt,s}
Ti,t

s=1 for each loan using estimates for

the expected inflation term structure from Federal Reserve Bank of Cleveland (2025).

An instructive case is that of a hypothetical case of a fixed real interest rate loan; this

serves as a useful approximation and is described in the following proposition:

Proposition 3 (Lender’s discount rate for a fixed real rate). For a fixed real interest rate

loan:

1 + ρi,t = Pi,t (1 + ri,t) + (1− Pi,t) (1− LGDi,t) .

where ri,t is the fixed real interest rate on the loan. This expression reflects the lender’s

return, accounting for repayment in non-default states and recovery in default states. In
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this case, ρi,t is independent of the loan’s maturity Ti,t, which simplifies its calculation and

interpretation.

Firm’s Cost of Capital. Returning to the firm’s cost of capital of Proposition 1, we can

estimate Λ for term loans, and then solve for rfirm. Proposition 4 provides an equation to

estimate Λ directly from the data.

Proposition 4 (Firm’s Cost of Capital). We can solve for Λi,t as:

Λi,t =
(1− Pi,t) (1− LGDi,t)

1 + ρi,t − (1− Pi,t) (1− LGDi,t)
.

This allows us to write the firm’s cost of capital as:

1 + rfirmi,t =
1 + ρi,t
1 + Λi,t

= (1 + ρi,t)− (1− Pi,t)(1− LGDi,t)︸ ︷︷ ︸
Expected Recoveries

.

In this expression, (1 − Pi,t)(1 − LGDi,t) represents expected recoveries, capturing the

key difference between ρi,t and rfirmi,t : lenders benefit from expected recoveries, but borrowers

get zero payoff in the default state, regardless of whether the lender recovers anything on

the loan. Thus the expected cost of the loan for the firm is lower than the expected return

for the lender. This formula allows us to measure the firm’s cost o capital for each loan in

the data, at origination.

Social Cost of Capital. Finally, we explain how we use data to estimate the social cost of

capital, rsociali,t . For measurement, we specialize and assume that the liquidation technology

is linear, meaning it takes the form φi (ki) = φi · ki. Combining with equation (9) and

proposition 4, this yields a formula for rsociali,t in terms of objects in the data.

Proposition 5. Assume a linear liquidation technology. The social cost of capital is then:

1 + rsociali,t =
(
1 + rfirmi,t

)
Mi,t + (1− Pi,t) · (1− LGDi,t) · levi,t

= (1 + ρi,t)Mi,t + (levi,t −Mi,t) · (1− Pi,t) · (1− LGDi,t)

where levi,t := Qi,t·bi,t+1

ki,t+1
is the firm’s leverage ratio.
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In our empirical analysis, we set the price feedback multiplier Mi,t = 1.10 Under that

calibration, the social cost of capital simplifies further:

1 + rsociali,t = 1 + ρi,t︸ ︷︷ ︸
Matching efficiency

+(levi,t − 1) · (1− Pi,t) · (1− LGDi,t)︸ ︷︷ ︸
Financial Frictions

(11)

The social cost of capital is thus equal to the lender’s discount rate (i.e., matching

efficiency), plus a term that reflects financial frictions related to default and recovery. This

latter term reflects the tension between lenders and borrowers. The presence of this term

also implies that whether the social return on capital exceeds the lender’s discount rate or

not is a function of whether firm leverage exceeds 1 or not. This is due to the following:

lenders care about average recovery per dollar of debt, φi(ki)/bi, which is equal to 1−LGDi

in the data. The planner, on the other hand, cares about the marginal recovery φ′
i(ki),

which is equal to (1− LGDi) · levi in the data. The two coincide when levi = 1, and so the

social cost of capital equals the lender’s discount rate in that case. In general, for firms with

levi,t ∈ (0, 1), we obtain the following ranking: rfirmi,t < rsociali,t < ρi,t.

5 Empirical Results

We now describe the results of applying the measurement exercise described in the pre-

vious section to the U.S. Y-14 data.

5.1 Summary Statistics

We provide summary statistics for key variables in Table 1. Since out unit of observation

is a loan origination, and so all reported firm financials correspond to the financials reported

in the quarter in which that origination took place. The average annual loan interest rate

in our sample is 4.18%. Adjusted for expected inflation at origination, this results in an

average real rate of 2.39%. We compute the real interest rate at origination by subtracting

(annualized) expected inflation over the maturity of the loan, using the expected inflation
10We show that this is a good assumption in Appendix B.2, where we estimate this variable in the data

and find a distribution extremely concentrated around 1.
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term structure that prevailed at time of origination. These loans have an average expected

default probability of 1.45% over the next year, and banks expect to lose, on average, 34.41%

of the outstanding value of the loan in the event of default. As a result, the lender’s discount

rate, ρ, averages 1.87%.11 The social cost of capital and firm’s cost of capital respect the

aforementioned ranking and are even lower, at 1.66% and 0.92% respectively.

Real interest rates vary across loans, with a standard deviation of 1.2% (1.7% for nominal

rates), reflecting heterogeneity both within and across time. The lender’s discount rate shows

similar heterogeneity, with a standard deviation of 1.6%. In contrast, the social cost of capital

and firm’s cost of capital have higher heterogeneity, with standard deviations of 1.8% and

2.8%, respectively.

Why are the variances of the lender’s discount rate and the contractual interest rate

similar? To build intuition, we can focus on the formula for the lender’s discount rate, ρ, for

fixed real rate loans. With some rearrangement, the lender’s discount rate can be expressed

as ρ = r − (1 − P )(r + LGD). Since r is small at annual frequencies compared to LGD,

we can further approximate ρ ≈ r − (1 − P ) · LGD. This yields the following variance

decomposition:

V [ρ] ≈ V [r] + V [(1− P ) · LGD]− 2 · C [r, (1− P ) · LGD] (12)

The variance of ρ is similar to the variance of r because the variance of expected losses,(1−

P ) · LGD, is offset by the covariance term: interest rates are higher when the lender’s

expected losses are high.

We view these results as a vindication for our method of estimating the cost of capital.

If our observed measures of default probabilities and recovery rates were just noise, then

the variance of the lender’s discount rate would be substantially greater than the variance

of interest rates: the covariance term would be zero, and the term V [(1− P ) · LGD] would
11The negative covariance of r and P means that the average ρ is lower than we might have expected

from the raw averages of P , r, and LGD. To see this, consider the approximation for real fixed rate loans,
1 + ρ = P (1 + r) + (1− P )(1− LGD); the average value of P (1 + r) will be brought down by the fact that
P is low when (1 + r) is high.
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push the variance of ρ substantially above the variance of r. Instead, the variance of the

cost of capital is similar to that of the interest rate, suggesting that default probabilities

and recovery rates covary with interest rates in the way that we would expect in a financial

market that is close to efficient.

Table 1: Summary Statistics

mean sd p10 p50 p90
Interest rate 4.18 1.69 2.21 3.94 6.60
Maturity (yrs) 6.83 4.65 3.00 5.00 10.25
Real interest rate 2.39 1.24 0.88 2.33 4.00
ρ (%) 1.87 1.55 0.41 1.88 3.62
rfirm (%) 0.92 2.80 -0.86 1.26 3.03
rsocial (%) 1.66 1.78 0.12 1.73 3.47
Prob. Default (%) 1.45 2.53 0.19 0.85 2.88
LGD (%) 34.41 13.17 16.00 35.60 50.00
Loan amount (M) 10.75 67.58 1.11 2.57 22.92
Sales (M) 1,269.93 6,051.48 2.16 58.50 1,560.10
Assets (M) 1,760.37 8,894.15 1.07 35.55 1,782.22
Leverage (%) 72.17 24.68 42.68 71.29 100.00
Return on assets (%) 27.60 58.51 4.56 15.76 47.81
N Loans 65,284
N Firms 38,751
N Fixed Rate 32,592
N Variable Rate 32,692

5.2 Averages by Quarter of Origination

We begin by analyzing the time series of average values, by quarter of origination. The

key inputs into our measures of the cost of capital are the interest rate, default probability,

and loss given default. We first analyze the behavior of these averages over time, in Figure

1. The first panel plots real rates at origination for all loans, while the second panel plots

contractual interest rate spreads for floating-rate loans only. During the time period we

study, interest rates fall and then rise concurrent with the movements of monetary policy;

average spreads are very stable, ranging from 1.9% to 2.3%. Default probabilities show a

modest upward secular trend, along with a temporary spike around the time of the COVID-
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19 pandemic. Expected losses given default fall around the onset of the pandemic, implying

that banks expect larger recoveries in the event of default. Note, however, that the magnitude

of the change in recoveries is sufficiently small that it has little effect on ρ, since this change

is multiplied by the (small) probability of default.

Real Interest Rate Interest Rate Spread (Variable Only)

Default Probability Loss Given Default

Figure 1: The solid line corresponds to the median values of key inputs by quarter of origina-
tion: real interest rate at origination, interest rate spread at origination (floating-rate loans
only), probability of default, and loss given default. Dashed lines correspond to p10, p25,
p75, and p90.

Next, in Figure 2, we plot the lender’s discount rate, ρ, the firm’s cost of capital, rfirm,

and the social cost of capital, rsocial, against the real five-year treasury rate. All rates covary

strongly with the real five-year Treasury rate. The average lender’s discount rate is similar

to the average rsocial, with a roughly 20 basis points spread. There is an average spread of

roughly 156 basis points between the lender’s discount rate and the treasury rate, although
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it has a delayed reaction to movements in treasury rates: the spread is initially stable at 150

basis points, then rises above the average when treasury rates fall and falls below the average

once treasury rates rise again. Note that the lender’s discount rate is already adjusted for

default risk, and so this cannot explain the spread relative to treasuries. While the social

cost of capital, rsocial is quite close to ρ, the firm’s cost of capital, rfirm, tracks the treasury

rate more closely with a small spread.

Figure 2: Averages by quarter of origination for the lender’s discount rate (ρ), firm cost of
capital (rfirm), social cost of capital (rsocial), and time series for the real five-year Treasury
rate.

While our analysis takes into account the maturity of the loan, there are potential con-

cerns that loans of different maturities may face different rates, even if they reflect a constant

spread on a (time-varying) risk-free rate. To mitigate these concerns, in Appendix B.5, we
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redo our analysis focusing on loans with a 5-year maturity. This is the most common matu-

rity for fixed rate loans. Five-year loans are convenient because they allow direct comparison

to the five-year treasury rate. The average cost of capital for five-year loans is very similar to

the overall sample: there is a roughly 150 basis point spread relative to five-year treasuries,

following the same dynamics as in the overall sample.

5.3 Cross-Sectional Heterogeneity

While the means display similar movements, they mask a substantial amount of cross-

sectional heterogeneity in these measures. In this section, we show that this heterogeneity is

substantial across measures even after controlling for time, lender and firm fixed effects. To

this end, we follow the variance decomposition of Daruich and Kozlowski (2023). To ensure

that we can estimate firm level fixed effects we subset our sample to the set of firms with

five or more distinct loans. We then progressively add time, lender-time, and firm-lender-

time fixed effects, building to the fixed-effects specification displayed in equation (13) below,

where i indexes the firm, τ represents the quarter of origination, b indexes the lender (BHC),

and l represents the particular loan.

rτbil = ατ + γτb + δτbi + ετbil (13)

The results are in Table 2, for the nominal interest rate, real rate, lender’s discount rate,

firm cost of capital, and social cost of capital. The time fixed effect explains 69% of the

variance in nominal interest rates, 49% of the variance in real interest rates, and 43% of

the variance in the lender’s discount rate. For all five variables, adding in lender-time fixed

effects explains a negligible share of the variance (at most 4.21% for rsocial), suggesting that

heterogeneity across lenders is not an important source of heterogeneity in interest rates or

the different measures of cost of capital. Adding in firm-lender-time fixed effects explains an

additional 15% to 31% of the variance of these measures. Finally, notice that the loan-level

variance, after controlling for firm-lender-time fixed effects, remains substantial, ranging

from 15% for nominal interest rates up to 49% for the firm cost of capital. To the extent

that our measure of misallocation depends on the variance of rsocial, these results show that
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a significant share of that variance is loan-specific and cannot be accounted for by either

time, lender, or borrower effects.

Time Bank Firm Loan
Contractual rate 69.08 1.68 14.72 14.52
Real rate 49.35 3.62 25.32 21.71
ρ 43.07 3.61 22.93 30.39
rfirm 16.5 3.73 30.88 48.9
rsocial 34.72 4.21 24.94 36.13
N Firms 1844
N Loans 16088

Table 2: Variance decomposition for contractual interest rates and different measures of the
cost of capital (ρ, rfirm, and rsocial) using equation 13.

Appendix B.3 further explores the correlation between the cost of capital and firm-level

covariates such as leverage, return on assets, and assets. While the effects of leverage and

size vary across the specific measure, there is a consistent positive correlation between all

measures of cost of capital and the return on assets: the cost of capital is consistently higher

at firms with high return on assets, even though the return on assets is negatively correlated

with the real interest rate once leverage and size are controlled for. Although we cannot

attach a causal interpretation to the estimated coefficients, this would be consistent with a

model where causality runs from the cost of capital to firm decisions: firms with a higher

cost of capital will demand a high return on their investments.

5.4 Misallocation

What does the heterogeneity in the cost of capital imply for the cost of misallocation?

To answer this we use our formula for misallocation from Corollary 1, setting δ = 0.06.12

We compute this statistic by quarter of origination, in order to focus on within-period mis-

allocation. Our model does not contain aggregate shocks, and we would thus need a richer
12Note that in steady state δ = I/Y

K/Y . In the data, at the annual frequency, the capital-output ratio is
about 3 while the investment-output ratio is about 0.18 (we measure capital as BEA Current-Cost Net Stock
of Fixed Assets and investment is GDPI in FRED). Hence, at an annual frequency, δ = 0.06. Additionally,
recall that, as previously explained, we set E = 1/2 and M = 1.
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model to study misallocation across time. We interpret our results below as reflecting what

misallocation would be for an economy that remained in the same steady state.

We plot our estimates in Figure 3. We find that, overall, the misallocation of capital

resulting from heterogeneity in the cost of capital, plus the financial friction term, is small.

In the period before the COVID pandemic the implied misallocation is low and decreasing:

reallocating capital across firms would increase aggregate output by 0.85%, on average,

during this period. This number rises with the onset of the pandemic, averaging 1.78%

during 2020 and 2021, before falling back to a somewhat elevated 1.23% starting in 2022.

Our model of misallocation studies an economy in steady-state, which complicates the

interpretation of short-run changes in the distribution of the cost of capital. A temporary

shock to the dispersion of rsocial among newly originated loans will have only limited effects

on the dispersion of rsocial in the full population of firms. Moreover, a steady-state model

with no aggregate shocks is not well suited to studying aggregate dynamics in response to a

shock. Thus, we caution against over-interpreting the transitory rise in implied misallocation

during the pandemic: if the increased dispersion of rsocial were permanent, then misallocation

would rise by about 1% in steady state, but it is not obvious how much misallocation actually

rose in response to the transitory shock. Instead, our main takeaway from the analysis is

that in “normal times” (e.g. before the pandemic), heterogeneity in rsocial implies a small

cost of misallocation in steady state.

5.5 Decomposing Misallocation

To understand the drivers of misallocation, we decompose our measure into the compo-

nent coming from heterogeneous cost of capital, ρ, and the component coming from het-

erogeneity in the financial frictions term. We perform two counterfactuals. In the first,

we replace ρ with its average value for that quarter, which is informative about how much

misallocation arises from heterogeneity in the financial frictions term. In the second coun-

terfactual we set the financial frictions term equal to its average value within the quarter,

allowing us to measure the misallocation that arises from heterogeneity in ρ. Note that
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Figure 3: Time series for the cost of misallocation, using the formula in Corollary 1. The
cost of misallocation is the percentage difference between actual output and output in a
counterfactual economy where the planner is free to reallocate physical capital across firms,
keeping exit decisions fixed.

neither counterfactual changes the within-quarter average of rsocial, and thus the results are

driven by changes in the variance of rsocial.

We show the results of these decompositions in Figure 4, for three distinct time peri-

ods. The main takeaway is that misallocation is mostly driven by heterogeneity in lender

discount rates. In the pre-pandemic period, if ρ is equalized across firms then the cost of

misallocation falls to just 0.11% instead of 0.85%. In contrast, the cost of misallocation in

the counterfactual with a constant financial friction is 0.61%. Note that there is an interac-

tion between ρ and the financial frictions term as total misallocation exceeds the sum of the

two counterfactuals. During the pandemic period (2020-2021), there is a significant increase

in total misallocation, which more than doubles. While still small, the financial frictions

term also doubles in importance. Quantitatively, the large increase comes from an increased
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Figure 4: Decomposing the cost of misallocation. The “benchmark” columns correspond to
the averages for the cost of misallocation in Figure 3 in the respective time period. “Constant
ρ” is the average cost of misallocation in a counterfactual exercise where we set the estimated
ρ for each newly originated loan to be equal to the average ρ for that quarter. “Constant
financial frictions” repeats the exercise for a counterfactual where we keep the second term
in equation 11 equal to its average value for each quarter, for all newly originated loans.

dispersion in ρ. In the post-pandemic period (2022-2024), misallocation remains over 40%

more elevated than in the pre-pandemic period. Once again, ρ plays the dominant role:

misallocation would be only 0.18% in the constant ρ counterfactual.

In Appendix B.5, we repeat our misallocation analysis, focusing on loans with a maturity

of five years. We find that the results are very similar to those of our main analysis. This

reinforces the robustness of our results, confirming that heterogeneity in the cost of capital

across firms is not driven by differences in maturity or term structure.
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5.6 The 2020-21 increase in misallocation

Our analysis in Figure 4 reveals that while both components of the social cost of capital

contribute to an increase in misallocation in the 2020-21, the heterogeneity in ρ is quantita-

tively the most important factor. Figure 5 plots the time series for the mean and standard

deviation of ρ. First, as already shown in Figure 2 the average ρ follows the risk-free interest

rate. Hence, as risk-free rates decreased during 2020-2021, the average ρ also decreased.

Second, the standard deviation of ρ increases during this period. Both these movements

contribute to an increase in the coefficient of variation for ρ. The increased dispersion in ρ

translates into an increased dispersion of rsocial which directly affects our measure of misal-

location.

Figure 5: Mean and standard deviation of the lender’s discount rate, ρ.

As explained in section 4, the key inputs for the calculation of ρi,t are loan-level char-
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acteristics and thus movements in its volatility must reflect changes in the volatility of

the underlying components. As highlighted in the previusly discussed approximation, ρ '

r − (1 − P ) · LGD, fluctuations in the variance of ρ reflect fluctuations in underlying real

interest rates, expected losses, and the covariance of these two terms. To study this formally,

we consider the following decomposition:

ρi,t = ρi,t|Pi,t=1︸ ︷︷ ︸
real yield

+
[
ρi,t − ρi,t|Pi,t=1

]
︸ ︷︷ ︸

expected losses

(14)

where ρi,t|Pi,t=1 is the ρi,t that solves the no arbitrage equation (10) for Pi,t = 1. We call

this object the “real yield” as it is analogous to the yield to maturity of a bond: the implicit

discount rate at which a loan is being priced under the assumption of no default on its

payments. The second term, the difference between the lender’s discount rate and the real

yield, reflects expected losses. We can thus decompose the variance of ρ into the sum of the

variance of the real yield (that reflects fluctuations in real rates only), variance of expected

losses (that reflects fluctuations in probabilities of default and losses given default), and a

covariance term.

Figure 6 plots the results of such variance decomposition, period by period. The covari-

ance term is close to zero throughout. The variance of the real yield is relatively stable,

reflecting the fact that the variance of real interest rates remained stable throughout the

sample, with a slight increase towards the end of the sample. Thus, while this term can help

explain why misallocation has remained more elevated in the post-pandemic period, it can-

not account for the sharp increase in 2020-21. This, in turn, is primarily explained by a sharp

increase in the variance of expected losses. One possible interpretation is that the 2020-21

period brought about an increase in the heterogeneity of expected losses increased without

a commensurate increase in the dispersion of interest rates, which would have been offset by

a more negative covariance term. That is, the dispersion of expected losses increased, but

without an increase in the dispersion of interest rates.

We hypothesize that this pattern may have emerged due to broad-based fiscal and mon-

etary interventions implemented during 2020–2021 to support the economy. In particular,

33



Figure 6: Decomposition of the variance of ρ.

many of these programs involved lending to or rescuing firms and sectors under financial

distress (such as the Paycheck Protection Program, the Main Street Lending Program, Pri-

mary Market Corporate Credit Facility, or the Secondary Market Corporate Credit Facility,

among others). Our hypothesis is that lenders inferred an implicit government guarantee

for many of these loans: if risky borrowers were to default, lenders believed the government

would likely intervene to cover the losses. This underpricing of risk may have ultimately led

to increased misallocation of credit.

Risk premia and aggregate shocks. Alternatively, a plausible explanation for the rise in

the dispersion of ρ is that it reflects risk premia, as lenders require an increased compensation

for risk during an extremely uncertain and volatile period. Furthermore, since different
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firms may be differentially exposed to aggregate shocks, the existence of heterogeneity in

risk premia may not necessarily imply the presence of misallocation (David et al., 2022).

Our framework is set in steady state and cannot accommodate aggregate shocks that would

trigger increases in risk premia. An increase in risk premia for some firms, say firms whose

cash flows were more exposed to COVID-19 disruptions, should raise the skewness of the

distribution of ρ. What we find is the opposite: not only the average ρ falls from 1.8% (2014-

19) to 1.0% (2020-21), but its skewness also becomes slightly more negative (from -3.55 to

-3.60). Thus, if anything, the “left tail” becomes more pronounced. This is at odds with

an explanation related to the rise in risk premia and, if anything, suggests that risk premia

seem to have fallen during this period, potentially due to explicit and implicit guarantees.

5.7 Relation to ARPK-based measures

The dominant approach to measuring misallocation builds on Hsieh and Klenow (2009)

and typically consists of using data on firm financials to approximate the marginal revenue

product of capital (MRPK) at the firm-level. Under certain assumptions about the structure

of the model, researchers can approximate MRPK with the average revenue product of capital

(ARPK). Aggregate measures of misallocation are then compute based on moments of the

distribution for ARPK. Our approach, instead, uses data on the cost of borrowing to measure

rsocial, which we argue is informative about the measure of MRPK that a planner who seeks

to minimize misallocation cares about. In this subsection, we show that rsocial is correlated

to traditional measures of ARPK, which we view as a form of validation of our measuring

framework.

Table 3 reports the results for regressions of the type:

logARPKi,t = αj,t + β log(rsociali,t + δ) + εi,t

where ARPKi,t is a measure of the ARPK, αj,t are sector-quarter fixed effects (NAICS4,

as commonly used in the misallocation literature), and εi,t is the error term. Each column

corresponds to a different measure of ARPK and/or sample. Columns (1)-(2) refer to the
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Y-14 sample, while (3)-(5) focus on a restricted sample of Y-14 loans that we are able to

match to Compustat firms. We consider different measures of ARPK that have been used

in the literature: columns (1) and (3) compute ARPK as sales over fixed assets for the

Y-14 and Compustat, respectively. Columns (2) and (4) use earnings before interest, taxes

and depreciation over fixed assets. Finally, column (5) uses a measure of value-added, only

available for Compustat firms.13 The table shows that the social cost of capital is significantly

correlated with all different measures of ARPK, even after controlling for industry and

time, with this correlation being stronger and more statistically significant for the VA-based

measure in column (5). The remaining lines of the table report the variance of the log of

each ARPK measure, and the implied amount of misallocation (on average) that would be

obtained by using that respective measure in our sufficient statistic for misallocation. Use of

the ARPK measures in the Y-14 data results in extremely large losses from misallocation:

64% and 46% for sales and EBITDA, respectively. Specializing to the Compustat sample

results in lower values, but still an order of magnitude above those implied by rsocial.

Why these differences? One caveat of our measure of misallocation is that it is a measure

of capital misallocation only, abstracting from the efficiency in the allocation of other inputs,

as well as product market misallocation (i.e., misallocation due to markup dispersion). On

the other hand, our measure relies on basic data elements that are typically available in

credit registries maintained by financial regulators all around the world, and does not require

detailed information on firm financials that is typically needed to compute ARPK, itself just

an approximation of MRPK.
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Table 3: Relation to ARPK measures

(1) (2) (3) (4) (5)
logARPK, Sales logARPK, EBITDA logARPK, Sales logARPK, EBITDA logARPK, VA

log(rsocial + δ) 0.15∗∗∗ 0.24∗∗∗ 0.16∗∗ 0.15∗ 0.39∗∗∗

(0.03) (0.04) (0.07) (0.08) (0.07)
Observations 59294 57334 4184 4072 3432
Adj. R2 0.27 0.22 0.68 0.52 0.61
NAICS4, Quarter FE yes yes yes yes yes
Sample Y-14 Y-14 Compustat Compustat Compustat
Var(logARPK) 1.97 1.52 0.19 0.24 0.21
Misalloc., ARPK, % 63.63 46.08 4.75 6.20 5.28
Var(log(rsocial + δ)) 0.04 0.04 0.01 0.01 0.01
Misalloc., rsocial + δ, % 0.96 0.96 0.36 0.36 0.36
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Cross-Country Comparison of Cost of Capital

Aleem Khwaja & Mian Cavalcanti et al. Beraldi This paper
1990 2005 2024 2025 2025

Pakistan Pakistan Brazil Mexico United States
Years of data 1980–1981 1996–2002 2006–2016 2003–2022 2014–2024
Mean real rate, % 66.8 8.00 83.0 12.4 1.4
SD real rate, % 38.1 2.9 93.3 5.2 1.2
Mean def. prob., % 2.7 16.9 4.0 8.9 1.5
Mean recovery rate, % 42.8 42.8 18.2 63.9 66.6
Implied misallocation, % 6.5 13.5 21.5 2.8 0.8

Notes: Data for Pakistan (1980–1981) are from Aleem (1990), and for 1996–2002 from Khwaja and Mian
(2005). Brazilian data are from Cavalcanti et al. (2024), and Mexican data from Beraldi (2025). Recovery
rates are country-level estimates obtained from the World Bank’s Doing Business database.

5.8 Cross-Country Comparison

Finally, in Table 4, we compare our results to related values for other countries. Our

method for deriving the distribution of rsocial incorporates the joint distribution of interest

rates, default probabilities, expected losses given default, and leverage. Although prior work

has not combined all of these variables in the ways necessary to apply our method we can still

learn something from more commonly reported statistics. We focus on papers that report
13Computing value added requires information on the cost of intermediates, which is available neither in

the Y-14 nor Compustat. For Compustat firms, it is possible to infer a measure of value added by using the
method described in Donangelo et al. (2019): some firms report total annual labor expenses. This can be
combined with the number of employees to compute an average wage by industry and year. We then use
the average wage to impute total labor costs to other firms in the industry in a given year. Value added is
then calculated as the sum of EBITDA to labor expenses, implicitly assuming that all non-labor costs are
related to intermediates.
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summary statistics for a representative sample of bank loans, or moneylenders in the case

of Aleem (1990). We are able to find five such papers that report the mean and standard

deviation of interest rates as well as the mean probability of default. For comparison, we also

use our data to provide the same statistics for the United States.14 Relative to less developed

countries, the United States stands out for a low mean and low standard deviation of interest

rates. However there is significant heterogeneity among the results for other countries, which

does not appear to simply track the level of development. Bank loans in Pakistan and Mexico

have a standard deviation of interest rates that is only modestly higher than in the United

States, while bank loans in Brazil and loans from moneylenders in Pakistan have an extremely

high standard deviation of interest rates.

We can attempt to use these statistics to compute misallocation, at the cost of strong

assumptions. We use recovery rates from the World Bank’s Doing Business database to

provide information on expected losses given default. Since we do not have information on

firm leverage, we use the lender’s cost of capital, ρ, in place of the social cost of capital,

rsocial. We then use the fixed rate formula for ρ and assume that the probability of default

and the losses given default do not vary across firms. This allows us to compute a cost of

misallocation, which we show in the last column. The cost of misallocation we compute for

the United states is similar to the actual cost that we computed earlier, although this is no

guarantee that the same is true for other countries.

There are two main takeaways from our misallocation analysis. First, the United states

seems to have the most efficient credit markets of the countries in our table: misallocation is

moderately higher for bank loans in Mexico and moneylenders in Pakistan, and substantially

higher in Brazil and among Pakistani banks. However the relationship between development
14Cavalcanti et al. (2024) report the spread relative to deposit rates; we compute the mean interest rate

by adding the mean deposit rate, which they report in the paper, to the mean spread. Beraldi (2025) reports
the spread relative to the Mexican 28-day interbank rate; we compute the mean interbank rate over this
time period and add this to the mean spread. For both papers, we use the distribution of spreads to get
the standard deviation of the spread. Beraldi (2025) reports quantiles instead of the standard deviation, so
we use the 90/10 percentile range and a normal approximation to infer the standard deviation. We convert
reported nominal rates to real rates by subtracting average annual inflation in the respective country during
the period of analysis.
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and credit market efficiency varies across settings, even for countries like Brazil and Mexico

that are at similar levels of economic development.

6 Conclusion

This paper develops a novel methodology to estimate the cost of capital using credit

registry microdata, and examines the implications of dispersion in the cost of capital for

misallocation. We show, in a dynamic corporate finance model, the connection between the

lender’s cost of capital, the firm’s cost of capital, and the social cost of capital, and how to

measure these objects in the data. We also show how the mean and variance of the social cost

of capital can be used as sufficient statistics to measure the output losses from misallocation

that arise from credit market imperfections.

After developing this general methodology, we apply it to credit registry data for the

United States. We find that although the cost of capital varies across firms, the resulting

misallocation is modest in normal times, resulting in output losses of about 1%. However,

dispersion in the social cost of capital among newly originated loans rose dramatically during

the COVID-19 pandemic, driven by a rise in the dispersion of lender discount rates. Un-

derstanding the causes of this rise in dispersion, as well as the consequences for aggregate

productivity, is an important area for future research. Moreover, comparing the distribution

of the cost of capital in the United States to the distribution in other economies, especially

less developed economies, will help us better understand how financial markets contribute

to development.
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Appendix

A Proofs

Proof of Proposition 1.

Et

[
Pt+1 (θ + (1− θ)Qt+1)

Qt

]
= (1 + ρ)

Et [Pt+1 (θ + (1− θ)Qt+1)]

Et [Pt+1 (θ + (1− θ)Qt+1)] + Et [(1− Pt+1)φ(k′)/b′]

= (1 + ρ)

(
1 +

Et [(1− Pt+1)φ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

)−1

= (1 + ρ) (1 + Λ)−1

where

Λ ≡ Et [(1− Pt+1)φ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

Derivation of Equation 5. We combine the first-order conditions for capital and for debt.

Recall the recursive formulation of the model.

V (k, b, z) = max
k′,b′

π (k, b, z, k′, b′) + βE [max {V (k′, b′, z′) , 0} | z]

π (k, b, z, k′, b′) = f (k, z) + (1− δ) k − k′ − θb+Q (k′, b′, z, ρ) (b′ − (1− θ) b)

The firm’s maximization yields the first-order conditions for tomorrow’s capital, k′, and

tomorrow’s debt, b′.

0 =
∂π (k, b, z, k′, b′)

k′ + βP (k′, b′, z)E
[

∂

∂k′V (k′, b′, z′) | z, V > 0

]
0 =

∂π (k, b, z, k′, b′)

b′
+ βP (k′, b′, z)E

[
∂

∂b′
V (k′, b′, z′) | z, V > 0

]
where P (k′, b′, z) is the probability of not defaulting, and V > 0 indicates that the firm

did not default.

We next use the Envelope Theorem to note that ∂V (k′,b′,z′)
∂k′

= ∂
∂k′

π (k′, b′, z′, k′′, b′′) and
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similarly to note that ∂V (k′,b′,z′)
∂b′

= ∂
∂b′

π (k′, b′, z′, k′′, b′′). Our first-order conditions become:

0 =
∂π (k, b, z, k′, b′)

k′ + βP (k′, b′, z)E
[

∂

∂k′π (k′, b′, z′, k′′, b′′) | z, V > 0

]
0 =

∂π (k, b, z, k′, b′)

b′
+ βP (k′, b′, z)E

[
∂

∂b′
π (k′, b′, z′, k′′, b′′) | z, V > 0

]
Next, we take derivatives of the profit function to plug into our first-order conditions.

We have:

∂π (k, b, z, k′, b′)

k
= fk (k, z) + (1− δ)

∂π (k, b, z, k′, b′)

b
= −θ − (1− θ)Q (k′, b′, z)

∂π (k, b, z, k′, b′)

k′ = −1 +
∂Q (k′, b′, z)

∂k′ (b′ − (1− θ) b)

∂π (k, b, z, k′, b′)

b′
= Q (k′, b′, z) +

∂Q (k′, b′, z)

∂b′
(b′ − (1− θ) b)

Plugging these expressions in, our first-order conditions now become:

0 = −1 +
∂Q (k′, b′, z)

∂k′ (b′ − (1− θ) b) + βP (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0]

0 = Q (k′, b′, z) +
∂Q (k′, b′, z)

∂b′
(b′ − (1− θ) b) + βP (k′, b′, z)E [−θ − (1− θ)Q (k′′, b′′, z′) | z, V > 0]

We next combine these two first-order conditions. Rather than thinking about investment

that is financed through earnings, we want to instead imagine that the firm is financing a

marginal unit of capital through borrowing. To do this, we multiply the first-order condition

for debt by

−
1− ∂Q(k′,b′,z)

∂k′
(b′ − (1− θ) b)

Q (k′, b′, z) + ∂Q(k′,b′,z)
∂b′

(b′ − (1− θ) b)

which reflects the amount of new debt needed to finance a marginal unit of capital. The

denominator reflects the amount raised by selling a unit of debt, Q (k′, b′, z), plus an ad-

justment factor, ∂Q
∂b′

(b′ − (1− θ) b), that reflects how the change in the price of debt affects

the cost of borrowing. Similarly, the numerator reflects how an increase in capital lowers is

partly self-financing, because it lowers the cost of borrowing.
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Combining the two equations then yields:

βP (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0] =

1− ∂Q(k′,b′,z)
∂k′

(b′ − (1− θ) b)

Q (k′, b′, z) + ∂Q(k′,b′,z)
∂b′

(b′ − (1− θ) b)

× βP (k′, b′, z)E [θ + (1− θ)Q (k′′, b′′, z′) | z, V > 0]

Further manipulation then yields:

P (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0] =

1− ∂Q(k′,b′,z)
∂k′

(b′ − (1− θ) b)

1 + ∂Q(k′,b′,z)
∂b′

· (b′ − (1− θ) b) /Q (k′, b′, z)

× P (k′, b′, z)E
[
θ + (1− θ)Q (k′′, b′′, z′)

Q (k′, b′, z)
| z, V > 0

]
= M ·

(
1 + rfirmt

)
where M is given by the following formula:

M =
1− ∂Q

∂k′
(b′ − (1− θ) b)

1 + ∂Q
∂b′

· (b′ − (1− θ) b) /Q

=
1− ∂ logQ

∂ log k′
· Q
k′
(b′ − (1− θ) b)

1 + ∂ logQ
∂ log b′

· Q
b′
(b′ − (1− θ) b) /Q

=
1− ∂ logQ

∂ log k′
· Q·b′

k′
(b′−(1−θ)b)

b′

1 + ∂ logQ
∂ log b′

· (b′−(1−θ)b)
b′

=
1− γ · Q·b′

k′
· ∂ logQ
∂ log k′

1 + γ · ∂ logQ
∂ log b′

where γ := (b′−(1−θ)b)
b′

. This completes the proof.

Proof of Proposition 3.

1 =
T∑
t=1

(
P

1 + ρ

)t [
r +

(1− P )

P
(1− LGD)

]
+

(
P

1 + ρ

)T

Let x = P
1+ρ

so

1 =

(
r +

1− P

P
(1− LGD)

)
x

1− x

(
1− xT

)
+ xT

45



Guess that 1 + ρ = (1 + r)P + (1− P ) (1− LGD)

1− x

x
=

1

x
− 1 =

(1 + r)P + (1− P ) (1− LGD)

P
− 1 = r +

1− P

P
(1− LGD)

And, therefore

1 = 1
(
1− xT

)
+ xT

which validates the guess.

Proof of Proposition 4. Rearranging Equations 2 and 4, we have

1 + ρ =
E
[
Pt+1 (θ + (1− θ)Qt+1) + (1− Pt+1)

φ(kt+1)
bt+1

∣∣∣ kt+1, bt+1, zt

]
Qt

= 1 + rfirmt + E
[
(1− Pt+1)

φ(kt+1)

Qt · bt+1

∣∣∣∣ kt+1, bt+1, zt

]
= 1 + rfirmt + (1− P ) · (1− LGD)

with the last line using our formula for LGD at origination.

Proof of Proposition 5. We start with Equation 9, then we use the fact that, by assumption,

φ′ (kt+1) = φ (kt+1) /kt+1 , and then we plug in the definitions of lev and LGD. This yields:

1 + rsocial =
(
1 + rfirm

)
M+ (1− P ) · φ′ (kt+1)

=
(
1 + rfirm

)
M+ (1− P ) · φ (kt+1)

kt+1

· Qtbt+1

Qtbt+1

=
(
1 + rfirm

)
M+ (1− P ) · (1− LGD) · lev

Plugging in our formula for rfirm from Proposition 4 yields
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1 + rsocial = (1 + ρ− (1− P ) (1− LGD))M+ (1− P ) · (1− LGD) · lev

= (1 + ρ)M+ (lev −M) · (1− P ) (1− LGD)

B Data

B.1 Details on Data Cleaning and Construction

While the FR Y-14Q Schedule H.1 data goes back to 2011, we keep only data from

2014Q4 due to data quality and consistency of reporting issues.

Borrowers. We drop all loans to borrowers without a Tax Identification Number. We keep

only Commercial & Industrial loans to nonfinancial U.S. addresses, i.e. lines reported on FR

Y-9C equal to 3, 4, 8, 9, and 10. We drop all borrowers with NAICS codes 52 (Finance and

Insurance), 92 (Public Administration), 5312 (Offices of Real Estate Agents and Brokers),

and 551111 (Offices of Bank Holding Companies), as some financial companies are classified

under the later two NAICS codes in our sample.

Loans. We drop all loans with a negative committed exposure, or for which the utilized

exposure exceeds the committed exposure as these are likely to be mistakes. We drop all

observations for which the origination date exceeds the current date, and all those for which

the maturity date precedes the current date.

We keep only “vanilla” term loans (Facility type equal to 7), and we thus exclude Type

A, B, and C term loans, as well as bridge term loans. We keep only loans that are classified

as fixed or variable rate, and drop mixed interest rate variability loans. We keep only loans

with maturity between 1 and 10 years, thus excluding very short-term and very long-term
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loans. We keep only loans with interest rates in the 1st-99th percentiles for fixed rate loans,

and spread in the 1st-99th percentiles for variable rate loans, as some of the very high and

low rates/spreads are likely to be data errors. Additionally, we drop loans with interest rates

higher than 50% at origination. We also drop loans for which the probability of default and

the loss given default are either missing or outside of the [0, 1] intervals. We also drop loans

for which the probability of default is equal to 1, as that is an indicator that the loan is in

default.

B.2 Estimating M

In this section, we argue that our calibration of M = 1 is a good approximation. To this

end, we provide estimates of this object in the data. Recall that this object was defined as

Mt :=
1− γ × Qb′

k′
× ∂ logQ

∂ log k′

1 + γ ××∂ logQ
∂ log b′

Given estimates for the function Q, γ, and firm leverage Qb′/k′ we can compute M for

every observation (loan origination) in our data. The main challenge is to estimate Q as a

function of firm borrowing and investment. This function can either be obtained by solving

a calibrated version of our model, or estimated non-parametrically in the data. In this

subsection, we present results for the latter approach.

First, we compute Q for every loan origination in the data. In a model setting such as

ours, where loans are modeled as perpetuities that decay at a geometric rate θ, we can write

Q as the present value of all future payments, discounted at the contractual interest rate r:

Q =
θ + (1− θ)Q

1 + r
=

θ

r + θ

r is directly observed in the data, and we can apply the common approximation that θ is

equal to the inverse of the loan maturity, θ = 1/T . This allows us to compute Q for every

loan origination in the data.

The model establishes that Q is a function of firm investment k′, firm borrowing b′, as well

as the current level of productivity z. Additionally, Q should also depend on the lender’s cost
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of capital ρ. We therefore approximate (the log of) Q as a polynomial of these four variables.

We measure firm investment as (the log of) tangible assets at loan origination, firm borrowing

as (the log of) total debt owed by the firm at loan origination, firm productivity as the (the

log of) sales over tangible assets (a measure of TFPR following Hsieh and Klenow (2009)).

The lender’s cost of capital ρ is measured as in the main text. We therefore estimate:

logQi = α + βk log ki + βb log bi + βz log zi + βρρi

+βk,k(log ki)
2 + βk,b log ki × log bi + βk,z log ki × log zi + βk,ρ log ki × ρi

+βb,b(log bi)
2βb,z log bi × log zi + βb,ρ log bi × ρi

+βz,z(log zi)
2βz,ρ log zi × ρi + βρ,ρ(ρi)

2εi

The resulting estimates can be used to compute the partial derivatives of logQ with respect

to investment and borrowing. Qb′/k′ is measured in a consistent manner, as the sum of total

liabilities plus new borrowings divided by total assets plus new borrowings. Finally, we take

advantage of the fact that at the steady state, γ = θ = 1/T .

Figure 7 presents the histogram for the estimated Mi in our sample. Clearly, the distri-

bution is extremely concentrated around 1. The mean is equal to 0.996 and the median to

0.997, with a standard deviation of 0.006. Figure 8 replicates our measure of misallocation,

when computed accounting for heterogeneity in M, and compares it to our baseline, showing

that the two measures are extremely similar, both in terms of magnitudes and dynamics.

Taken together, these results suggest that our assumption that M = 1 is a good one.

B.3 Cross-sectional Heterogeneity

We also explore the correlation between the cost of capital and firm-level covariates. We

regress log(1+r) separately on log leverage, log return on assets, and log assets. We conduct

this analysis for interest rates, ρ, rfirm, and rsocial. The results are shown in Table 5. Of

the three covariates, the best predictor is the return on assets; interest rates and the cost

of capital are consistently higher at firms with high return on assets. Although we cannot

attach a causal interpretation to the estimated coefficients, this would be consistent with a
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Figure 7: Histogram for estimated Mi

model where causality runs from the cost of capital to firm decisions: firms with a higher cost

of capital will demand a high return on their investments. Yet perhaps more notable is the

very low R2. The return on assets explains between 2 and 3% of the variance, depending on

the measure of the cost of capital, with other covariates explaining less than 1%. Firm-level

covariates explain approximately none of the variance in the cost of capital.
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Table 5: Determinants of Capital Costs and Spreads

Panel A: Real Contractual Rate
(1) (2) (3) (4)

log leverage 0.100∗∗∗ 0.081∗∗∗

(0.00) (0.00)
log roa 0.010∗∗∗ -0.056∗∗∗

(0.00) (0.00)
log assets -0.174∗∗∗ -0.182∗∗∗

(0.00) (0.00)
Observations 63189 60156 60913 60153
Adj. R2 0.47 0.46 0.48 0.49
NAICS4, Quarter FE yes yes yes yes
Panel B: Lender Discount Rate

(1) (2) (3) (4)
log leverage 0.005 0.010∗∗∗

(0.00) (0.00)
log roa 0.038∗∗∗ 0.028∗∗∗

(0.00) (0.00)
log assets -0.042∗∗∗ -0.029∗∗∗

(0.00) (0.00)
Observations 63189 60156 60913 60153
Adj. R2 0.35 0.34 0.35 0.34
NAICS4, Quarter FE yes yes yes yes
Panel C: Firm’s Cost of Capital

(1) (2) (3) (4)
log leverage -0.072∗∗∗ -0.058∗∗∗

(0.00) (0.00)
log roa 0.052∗∗∗ 0.086∗∗∗

(0.00) (0.00)
log assets 0.068∗∗∗ 0.092∗∗∗

(0.00) (0.00)
Observations 63189 60156 60913 60153
Adj. R2 0.21 0.20 0.20 0.21
NAICS4, Quarter FE yes yes yes yes
Panel D: Social Cost of Capital

(1) (2) (3) (4)
log leverage 0.103∗∗∗ 0.110∗∗∗

(0.00) (0.00)
log roa 0.066∗∗∗ 0.062∗∗∗

(0.00) (0.00)
log assets -0.029∗∗∗ 0.018∗∗∗

(0.00) (0.00)
Observations 63189 60156 60913 60153
Adj. R2 0.29 0.27 0.27 0.28
NAICS4, Quarter FE yes yes yes yes
Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 8: Misallocation measure with M = 1 vs. estimated Mi
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B.4 Misallocation weighted by loan size

Figure 9: Misallocation, unweighted and weighted by loan size

B.5 Robustness: Results for Five-Year Loans
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Figure 10: Averages by Quarter of Origination (Five-Year Sample)
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Figure 11: Cost of Misallocation (Five-Year Sample)
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Figure 12: Decomposing Misallocation (Five-Year Sample)
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