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Abstract

We develop a methodology to estimate the cost of capital using credit registry

microdata, and apply it to study capital allocation efficiency in the United States.

Our measure incorporates the contractual interest rate, expected default probability,

recovery rate, and expectations of future rates. We estimate three distinct rates: (i) the

lender’s discount rate, (ii) the firm’s cost of capital, and (iii) the social cost of capital.

We derive a sufficient statistic for misallocation based on the first and second moments

of the social cost of capital. Dispersion in this rate captures both heterogeneity in

lender discounting and the presence of financial frictions. Normal times feature modest

amounts of misallocation, corresponding to an output loss of 0.5%. However, during the

2020–2021 period, misallocation increased to 1.1%, primarily due to the underpricing

of riskier loans.
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1 Introduction

How much does it cost a firm to obtain capital? Economic models often simplify by

assuming that all firms can borrow in a competitive market at a common rate. In reality,

however, the cost of capital varies significantly across firms. This variation stems not only

from differences in contractual interest rates but also from firm-specific factors such as de-

fault probabilities, loan terms, and lender cost of funds. Such heterogeneity in the cost of

capital has profound implications: it can distort the allocation of capital across firms, leading

to inefficiencies in economic output (Gilchrist et al., 2013; Hsieh and Klenow, 2009). Un-

derstanding these inefficiencies is critical for policymakers and researchers seeking to design

effective financial and economic policies.

This paper makes two key contributions to the literature. First, we develop a novel

methodology that leverages a corporate finance model and uses credit registry microdata to

measure the dispersion of the cost of capital. This methodology allows us to quantify how

these variations contribute to capital misallocation. The theory implies a sufficient statistic

for misallocation that can be directly measured with credit registry data. Second, we apply

this methodology to U.S. data and uncover two primary insights. While the cost of capital is

heterogeneous across firms, the implied misallocation is surprisingly small, suggesting that

U.S. capital markets are close to allocative efficiency. However, this efficiency deteriorated

in the aftermath of the COVID-19 pandemic, driven by the underpricing of risky loans.

The methodology we develop offers several advantages. Unlike traditional approaches

that require solving structural models computationally, our approach uses sufficient statistics

derived directly from moments of the data. This not only simplifies implementation but also

provides more robust identification of the sources of misallocation without heavy reliance on

calibration assumptions.

Section 2 develops the dynamic corporate finance model that provides the foundation

for the derivation of the sufficient statistic for misallocation and our empirical measurement

of the cost of capital. The model captures firm-level borrowing, investment, and default
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decisions in the presence of idiosyncratic shocks, such as productivity fluctuations and fixed

operating costs. Each firm borrows from a single lender who discounts future cash flows at a

match-specific rate ρ. While we refer to ρ as the lender’s discount rate, it more broadly re-

flects match-specific efficiency—capturing variation in loan pricing that is not fully explained

by observable loan terms. Using the firm’s optimality conditions, we show how ρ influences

the firm’s internal cost of capital, which in turn determines its expected marginal revenue

product of capital. This link forms the basis for our measure of misallocation.

In Section 3, we quantify the efficiency costs arising from heterogeneity in the cost of

capital. We compare the decentralized equilibrium to the allocation chosen by a planner who

reallocates capital across firms to maximize aggregate output, subject to the same aggregate

capital stock and taking firms’ default decisions as given. We define the social cost of capital,

which is the marginal value of allocating an extra unit of capital for each firm from the point

of view of the planner. We show that this measure is approximately equal to the sum of

two terms: the lender’s discount rate plus a term that reflects financial frictions related to

limited liability and recovery in case of default in the spirit of Cooley and Quadrini (2001).

At the optimum, the planner would like to equate the social cost of capital across firms.

This insight allows us to derive a sufficient statistic for the output loss from misallocation

that depends only on the mean and variance of the social cost of capital. This statistic is

robust to firm-level heterogeneity in production technologies and does not rely on structural

estimation.

Section 4 describes how we map the model to U.S. credit registry data. We define the

lender’s discount rate as the internal rate of return that satisfies the lender’s break-even

condition, accounting for both repayment probabilities and expected losses in default. To

compute this rate at the firm level, we require loan-level data on contractual interest rates,

loan maturities, borrower-specific probabilities of default, and loss given default (LGD).

In the case of floating-rate loans, we also need forward-looking benchmark interest rate

expectations. Using these variables as well as the equations of the model, we estimate three

distinct rates: the lender’s discount rate, the firm’s cost of capital, and the social cost of
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capital. We then apply the sufficient statistic to the social cost of capital to estimate the

output loss from misallocation.

Finally, in Section 5, we present our empirical findings. Using data from over sixty

thousand loans originated between 2014 and 2024, we show that the average measures of

cost of capital closely track the five-year U.S. Treasury rate. We estimate three distinct

rates. First, the lender’s discount rate is specific to each borrower-lender pair and captures

the efficiency of the credit match. It has a mean of 3.8% and a variance of 1.8%. Second,

the firm’s cost of capital—defined as the expected payment by the firm conditional on no

default—has a mean of 2.9% and a variance of 6.5%. This rate is lower than the lender’s

discount rate because it does not account for repayment in case of default. Finally, the social

cost of capital reflects the total return on capital from a social perspective, incorporating

expected recovery in the event of default. It has a mean of 3.6% and a variance of 2.5%. For

comparison, the average five-year U.S. Treasury rate over this period was 2.2%.

At the optimum, the planner seeks to equalize the social cost of capital across firms. Our

sufficient statistic provides a mapping from the variance of the social cost of capital—2.5% on

average—to output losses due to misallocation. We estimate that, under normal conditions,

the implied output loss from capital misallocation is modest, around 0.5%. However, this

loss increased significantly during the COVID-19 pandemic (2020–2021), rising to 1.9% at

its peak.

The increase in misallocation during 2020-2021 is predominantly explained by rising het-

erogeneity in lender discount rates, rather than by a worsening of financial frictions related

to default. Specifically, we find a marked rise in the coefficient of variation of the lender

discount rates, reflecting greater dispersion in borrowing conditions across firms. This in-

crease in dispersion is not driven by higher expected credit losses—as default probabilities

and losses given default remain stable—but rather by changes in the distribution of contrac-

tual interest rates. We trace these changes to the underpricing of very risky loans, which

expanded access to cheap credit for low-quality borrowers.
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Our hypothesis is that the broad fiscal and monetary interventions enacted during the

COVID-19 crisis—such as the Paycheck Protection Program (PPP), the Main Street Lend-

ing Program (MSLP), and the corporate credit facilities (PMCCF and SMCCF)—played a

key role in distorting credit markets. These programs, while aimed at stabilizing the econ-

omy, effectively supported distressed firms. This may have led lenders to perceive implicit

guarantees for riskier loans, generating a moral hazard problem that incentivized them to

extend credit to lower quality borrowers under the expectation of bailouts in the event of

default. This may have also contributed to zombie lending. The central implication is that

these guarantees may have misaligned credit pricing, resulting in capital misallocation. In

the absence of such implicit guarantees, lenders would have priced risk more accurately,

leading to a more efficient allocation of credit across firms.

Literature Review. Our paper contributes to the broader literature on measuring misal-

location. Following seminal work by Restuccia and Rogerson (2008) and Hsieh and Klenow

(2009), there has been significant progress in quantifying misallocation across various settings

(see Hopenhayn (2014) and Restuccia and Rogerson (2017) for comprehensive reviews). A

key challenge in this literature is measuring misallocation without imposing strong assump-

tions on firms’ production technologies. Haltiwanger et al. (2018) emphasize that standard

approaches are only valid under restrictive assumptions, such as a common Cobb-Douglas

production function with firm-specific productivity shifters.

One strand of the literature focuses on specific sources of distortions. For instance,

Kaymak and Schott (2024) study corporate tax asymmetries and find that heterogeneity in

effective marginal tax rates can distort capital and labor allocation, reducing aggregate pro-

ductivity. Alternatively, recent work has sought to directly estimate marginal products using

(quasi-)experimental variation, allowing for richer production heterogeneity (e.g., (Carrillo

et al., 2023; Hughes and Majerovitz, 2025). However, such approaches have only been applied

in narrow contexts where experimental variation is available.

Our paper measures heterogeneity in the marginal product of capital by exploiting firm-
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level variation in the cost of capital, allowing us to assess misallocation across a much

broader set of firms while remaining agnostic to functional form assumptions. Closest to

our approach, Gilchrist et al. (2013) develop a tractable framework to quantify misallocation

arising from dispersion in borrowing costs. We emphasize two key differences. First, a

portion of the credit spread dispersion in Gilchrist et al. (2013) reflects variation in default

probabilities and recovery rates, whereas our framework explicitly models corporate default.

Second, their analysis relies on corporate bond data, which restricts attention to large firms.

In contrast, we use bank loan data that encompasses a significantly wider range of firms,

including small, medium, and large-sized enterprises.

We also contribute to a literature that estimates heterogeneity across firms in interest

rates and/or the cost of capital. Banerjee and Duflo (2005) summarize early evidence for

substantial heterogeneity in interest rates across borrowers in developing countries, arguing

that this heterogeneity implies significant misallocation. Recent work by Gormsen and Huber

(2023, 2024) analyzes transcripts of firm earnings calls to extract information on the discount

rates and cost of capital that firms use. Cavalcanti et al. (2021) use credit registry data to

study heterogeneity in interest rates for borrowing firms in Brazil. They find substantial

heterogeneity across firms and use a dynamic structural model with financial frictions to

infer the cost of capital. This paper also builds on the findings of Faria-e-Castro et al.

(2024), who analyze the dispersion in borrowing rates for U.S. firms using a comprehensive

database of loans and bonds. Their study highlights significant heterogeneity in borrowing

costs, even within firms, and demonstrates the persistent impact of borrowing costs on firm-

level investment and borrowing behaviors.

Relative to this previous literature, our paper makes two key methodological contribu-

tions. First, we provide a methodology to estimate a firm’s cost of capital from credit registry

data. This is not as simple as measuring the interest rate because the cost of capital depends

on the ex-ante repayment probability and expected losses given default. Second, we show

how to use moments of the distribution of the cost of capital to develop sufficient statis-

tics that allow us to measure the cost of misallocation non-parametrically in a dynamic,
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stochastic model.

2 Corporate Finance Model

This section outlines the core components of the model, which captures the interactions

between borrowers and lenders. We demonstrate how the model’s optimality conditions can

be derived and integrated with microdata on loan characteristics to estimate the lender’s

discount rate and the firm’s cost of capital. These rates provide insights into the firm’s

expected marginal product of capital, a critical metric for assessing misallocation.

Time is discrete and indexed by t = 0, 1, . . .. The economy is populated by firms that

borrow and invest, and by lenders who finance those firms. There is a unit mass of firms,

indexed by i, who exit over time. We assume that every firm that exits is replaced by a

firm with identical characteristics that does not produce in the current period, such that the

mass of firms is constant and equal to 1. We now describe the decision problem of the firm,

and its interaction with the lenders.

Borrowers. The borrowers in the model are firms operating in the nonfinancial sector.

These firms operate under limited liability and make decisions regarding production, invest-

ment, and borrowing. Output (net of non-capital costs) is generated using a production

function f(ki, zi), where ki represents capital and zi denotes a vector of shocks that affect

firm net output. Note that since zi can be a vector, this accommodates productivity shocks,

stochastic fixed costs as well as rich heterogeneity in the production function. To sustain or

expand their operations, firms invest in capital and issue long-term defaultable debt bi. In

the event of default, lenders recover a fraction φi(ki) of the firm’s existing assets ki.

Lenders. Lenders finance firms, with each firm matched to a single lender. Upon matching,

the borrower-lender pair draws a realization of ρi, which represents the efficiency of the
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match.1 We refer to ρi as the lender’s discount rate. Loans are priced so that lenders break

even using ρi as their discount rate, taking into account firm-specific characteristics and risk

assessments.

Firm’s Problem. Firms determine their investment and borrowing strategies to maximize

their value, taking into account the possibility of future default. The value of repayment for

a firm is expressed as:

Vi(ki, bi, zi) = max
k′i,b

′
i

π(ki, bi, zi, k
′
i, b

′
i) + βE [max {Vi(k

′
i, b

′
i, z

′
i), 0} |zi] ,

where π(ki, bi, zi, k
′
i, b

′
i) denotes the firm’s profit function, and β represents the discount

factor.

The profit function captures the firm’s net return from production and financing decisions:

π(ki, bi, zi, k
′
i, b

′
i) = f(ki, zi) + (1− δ)ki − k′

i − θibi +Qi(k
′
i, b

′
i, zi)(b

′
i − (1− θi)bi).

Here, f(ki, zi) represents the firm’s output as a function of capital ki and productivity zi,

(1 − δ)ki accounts for the depreciated value of current capital, and k′
i denotes new capital

investment. The term θibi reflects repayment on existing debt, while Qi(k
′
i, b

′
i, zi) captures

the price of new debt, with b′i − (1− θi)bi representing the net new borrowing.

Debt Pricing. Lenders are risk-neutral and price debt based on their cost of capital, ρi.

The price of debt Qi(k
′
i, b

′
i, zi) is determined as:

Qi(k
′
i, b

′
i, zi) =

E
[
Pi(k

′
i, b

′
i, z

′
i) (θi + (1− θi)Qi(k

′′
i , b

′′
i , z

′
i)) + (1− Pi(k

′
i, b

′
i, z

′
i))

φi(k
′
i)

b′i

∣∣∣ k′
i, b

′
i, zi

]
1 + ρi

,

(1)

where Pi(k
′
i, b

′
i, z

′
i) is an indicator function that is equal to 1 if the firm repays, and 0 other-

wise, and φi(k
′
i)/b

′
i is the recovery rate in the event of default, per dollar lent.

1This variable captures both lender- and borrower-specific factors that lie outside the scope of the model,
such as lender financing costs, risk appetite, or the dynamics of relationship lending. While we do not provide
a specific microfoundation for the heterogeneity in ρi, we focus on analyzing its implications.
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The Firm’s Cost of Capital. We define the firm’s cost of capital, rfirmi , as the ra-

tio of the expected value of future repayments adjusted for the probability of repayment,

E [P ′
i(θi + (1− θi)Q

′
i)], relative to the current price of borrowing, Qi.2 The firm’s cost of

capital is the implicit interest rate that it pays on its debt. Formally, it is expressed as:

1 + rfirmi =
E [P ′

i(θi + (1− θi)Q
′
i)| k′

i, b
′
i, zi]

Qi

. (2)

This equation captures how the firm’s borrowing cost depends on repayment probabilities

and debt maturity. The firm’s cost of capital is one of the key components of the firm’s first

order condition with respect to capital. Intuitively, we show how to measure rfirmi in the

data, and this will give us information about the marginal revenue product of capital.

Proposition 1 characterizes the firm’s cost of capital. All proofs are in Appendix A.

Proposition 1 (Firm’s Cost of Capital). The firm’s cost of capital can be written as:

1 + rfirmi =
1 + ρi
1 + Λi

, Λi :=
E [ (1− P ′

i)φi(k
′
i)/b

′
i| k′

i, b
′
i, zi]

E [P ′
i (θ + (1− θi)Q′

i)| k′
i, b

′
i, zi]

.

The term Λi represents the wedge between the borrower’s cost of capital, rfirmi , and the

lender’s discount rate, ρi. This wedge arises due to lender recovery in the event of default.

When there is no recovery (φi = 0), the wedge disappears (Λi = 0), and the firm’s cost of

capital equals the lender’s discount rate (rfirmi = ρi). On the other hand, when the lender

can recover some value after default (φi > 0), the wedge becomes positive (Λi > 0), and

the firm’s cost of capital rfirmi is lower than ρi. This reduction in perceived borrowing cost

occurs because the borrower only accounts for states where repayment occurs.

Marginal Revenue Product of Capital. The firm’s investment decision follows a stan-

dard first-order condition, which equates the firm’s cost of capital with its expected marginal

revenue product of capital. Formally, this condition is expressed as:3

(1 + rfirmi )Mi = E[P ′
i(fk(k

′
i, z

′
i) + 1− δ)| k′

i, b
′
i, zi]. (3)

2We use P ′
i as a shorthand for Pi(k

′
i, b

′
i, z

′
i) and similar for Q′

i.
3We provide a derivation of this equation in Appendix A.
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The left-hand-side of equation (3) represents the cost of raising more capital. This

includes the firm’s cost of capital, rfirmi , adjusted by the price feedback multiplier, Mi,

which captures the effect of the firm’s borrowing and investment on the price of debt. The

price feedback multiplier Mi is given by:

Mi :=
1− γi × Qi·b′i

k′i
× ∂ logQi

∂ log k′i

1 + γi × ∂ logQi

∂ log b′i

, γi :=
b′i − (1− θi)bi

b′i
,

where γi measures the share of debt tomorrow that will be newly purchased. The numerator

of Mi reflects the feedback from changes in capital on the price of debt, while the denomi-

nator incorporates the feedback from changes in borrowing. Together, these terms provide

a comprehensive characterization of how price dynamics influence the firm’s cost of capital.

The right-hand-side of equation (3) represents the expected marginal revenue product of

capital. This term includes the marginal productivity of capital, fk(k′
i, z

′
i), and the depreci-

ation factor, 1− δ, weighted by the states of the world in which the firm repays, P ′
i.

3 Measuring Misallocation

When financial markets are efficient, all firms face the same cost of capital. However, in

the data we find that the cost of capital varies across firms. How does this inefficiency in

financial markets translate into an inefficiency in the real economy? We now consider the

aggregation of output and investment across firms in order to study the steady-state costs

of misallocation arising from dispersion in the cost of capital.

3.1 The Aggregate Economy and Welfare

We begin by setting up the aggregate environment in order to study both the decentral-

ized equilibrium and the planner’s problem. The firm’s problem will be the same as before.

There is no aggregate risk, so aggregates are not stochastic. Firms make undifferentiated

products and take the price of their output as given. There is some initial stock of capital

K0, and future capital depends on investment and depreciation through the standard law of

motion.

10



We introduce the notation ωi,t, which is equal to one if firm i is still operating at time t,

and zero if it has exited. Note that Et−1 [ωi,t] = Pi,t. Aggregate output is given by:

Yt =

∫ 1

0

ωi,t · f (ki,t, zi,t)︸ ︷︷ ︸
Output if Operates

− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))︸ ︷︷ ︸
Losses if Defaults

di (4)

Note that we have defined output, Yt, so that it includes both the firm’s output in the event

of production, f (ki,t, zi,t), and the losses from liquidation, (1− δ) ki,t − φi (ki,t), in the event

of default. This allows us to define aggregate investment simply:

It = Kt+1 − (1− δ)Kt (5)

Finally, aggregate capital is given by:

Kt =

∫ 1

0

ki,tdi (6)

The planner wishes to maximize welfare, U , controlling each firm’s capital and exit

decision. However, the planner is subject to the same information constraints as the firm:

ki,t must be decided in period t− 1, without yet knowing the productivity or operating costs

that will prevail in that period. Exit decisions are made after zi,t is revealed, but with the

values for future periods still unknown.

There is a representative household that obtains utility from consumption: we abstract

from inequality to focus on productive efficiency. The household’s utility is additively sepa-

rable over time. Consumption is equal to aggregate output minus investment. Thus, welfare

in this economy is given by:

U =
∞∑
t=0

βt · u (Yt − It)

where β is the household’s discount rate and u is the utility it gets from consumption.
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3.2 The Planner’s Problem

Let St
i := {zis}ts=0 denote the entire history of states, through period t.4 Define St :=

{St
i}i∈[0,1] as the collection of all firms’ histories. We can use this notation to set up the

appropriate constraints to the planner’s problem: the planner must set ki,t as a function of

St−1, and ωi,t as a function of St.5 The planner’s problem is:

U∗ = max{
{ki,t(St−1),ωi,t(St)}i∈[0,1]

}∞

t=1

∞∑
t=0

βt · u (Yt − It)

s.t.

ωi,t

(
St
)
∈ {0, 1} ∀i

ωi,t+1

(
St+1

)
≥ ωi,t

(
St
)
∀St ⊂ St+1,∀i

and Equations 4, 5, and 6 hold

where the inequality ωi,t+1 (S
t+1) ≥ ωi,t (S

t) notes that if the firm exits, it cannot subse-

quently re-enter. In period t = 0, all firms operate and capital is set exogenously.

We can rewrite the planner’s problem as a nested maximization problem, to isolate the

intensive-margin choice of capital, holding aggregate capital and the extensive margin fixed.

Note that It = Kt+1 − (1− δ)Kt, and so it depends only on aggregate capital (not the

allocation across firms). We can thus rewrite the planner’s problem in the following nested

form:

U∗ = max{
Kt,{ωi,t(St)}i∈[0,1]

}∞

t=1

∞∑
t=0

βt · u

 max{
{ki,t(St−1)}i∈[0,1]

}∞

t=1

Yt

− It


with the same constraints as before.

4Note that the only shock in our model is zi,t, so this is the full history of states.
5In practice, since there is no aggregate risk, the planner will only need to use the individual firm’s state

histories to make decisions.
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3.3 The Cost of Misallocation

We can now turn our attention to the inner problem. Note that the inner problem is

separable across time periods, allowing us to separate it into a sequence of static problems.

We focus on the cost of misallocation in terms of output. Simplifying our notation, we can

rewrite the problem as follows:

Y ∗
t

(
Kt, {ωi,t}i∈[0,1]

)
= max

{ki,t}i∈[0,1]

∫ 1

0

Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))] di

s.t.

Kt =

∫ 1

0

ki,tdi

This problem is now a special case of the environment in Hughes and Majerovitz (2025).

We can use their main proposition to derive the cost of misallocation, up to a second-order

approximation. Define

gi (ki) := Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))] .

Proposition 2 shows the cost of intensive-margin misallocation.

Proposition 2 ((Special Case of Hughes and Majerovitz (2025))). The cost of intensive-

margin misallocation is given by

log Y ∗
t

(
Kt,
{
ωi,t

(
St
)}

i∈[0,1]

)
− log Yt︸ ︷︷ ︸

Cost of Intensive-Margin Misallocation

≈ 1

2
· Egi(ki) [Ei]︸ ︷︷ ︸

Sales-Weighted Elasticity

·Vargi(ki)Ei
(
log

(
∂

∂ki,t
gi (ki)

))
︸ ︷︷ ︸
Weighted Variance of Log Expected MPK

where gi (ki) is the expected output of the firm as a function of ki, Ei is the elasticity of

expected output with respect to the cost of capital, Egi(ki) [·] denotes the weighted average,

weighting by gi (ki), Vargi(ki)Ei (·) denotes the weighted variance, weighting by gi (ki) Ei. All

moments are computed for the set of firms that are operating at time t− 1. The formulas for

the expected output of the firm and the elasticity of expected output with respect to the cost
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of capital are given by:

gi (ki) = Et−1 [ωi,t · f (ki,t; zi,t)− (1− ωi,t) · ((1− δ) ki,t − φi (ki,t))]

Ei = −

(
∂
∂ki

gi (ki)
)2

gi (ki) · ∂2

(∂ki)
2 gi (ki)

Note that in a Cobb-Douglas setting, with f (k, z) = z · kα and no default, the elasticity

simplifies to E = α
1−α

. In our quantitative analysis, we will calibrate E = 1
2
, consistent

with α = 1
3
. Moreover, note that although the proposition above provides a second-order

approximation, it becomes exact in a setting where production is Cobb-Douglas and where

productivity and distortions are jointly log-normal (the weights also fall out in that special

case).

3.4 The Social Cost of Capital

We have already introduced the notion of the lender’s discount rate, ρ, and the firm’s

cost of capital, rfirm. We now introduce the notion of the social cost of capital, rsocial. This

will reflect the social marginal product of capital at firm i. We define rsociali,t as the derivative

of aggregate consumption (Yt − It) at time t + 1 with respect to kit+1, taking expectations

at time t (when the investment decision is made).6 We have:

rsociali,t :=
∂Et [Yt+1 − It+1]

∂ki,t+1

= Et [P i,t+1 (fk (ki,t+1; zi,t+1) + 1− δ)] + (1− P i,t+1) · φ′
i (ki,t+1)

Combining this with the firm’s first-order condition for investment in Equation (3) yields:

1 + rsociali,t =
(
1 + rfirmi,t

)
Mi,t + (1− P i,t+1) · φ′

i (ki,t+1) (7)

Note that 1+ rsociali,t−1 = ∂
∂ki

gi (ki)+1− δ. This will allow us to use the distribution of rsocial to

measure the cost of misallocation. When we bring this result to the data, we will focus on

measuring the variance of rsocial, and use standard values to calibrate E . Moreover, we will
6Proposition 2 is in terms of gross output, rather than consumption. Nevertheless, we define rsocial in

this way to parallel our definitions of ρ and rfirm.
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make two further simplifying assumptions. First, we will focus on the unweighted variance,

since the weights are difficult to observe in practice. Second, we will use the log-normal

approximation Var
(
log
(
rsociali,t−1 + δ

))
≈ log

(
1 +

Var
(
rsociali,t−1 +δ

)
E
[
rsociali,t−1 +δ

]2
)

To measure misallocation in our data, we combine this with our derivation of rsocial to

yield the following corollary:

Corollary 1. Assume that
(
rsociali,t−1 + δ

)
is log-normally distributed, and also assume that

weighted moments can be replaced with unweighted moments. The cost of intensive-margin

misallocation is given by

log Y ∗
t

(
Kt,
{
ωi,t

(
St
)}

i∈[0,1]

)
− log Yt

≈ 1

2
· E · log

(
1 +

Var
(
rsociali,t−1

)
E
[
rsociali,t−1 + δ

]2
)

This corollary allows us to connect dispersion in rsocial, an object that we will be able

to measure in the microdata, with the cost of intensive-margin misallocation of capital. We

next turn to how to measure ρ, rfirm, and rsocial using credit registry data.

4 Empirical Methodology

This section describes the main data sources that we use, as well as the procedures we

follow to map model objects to the data in order to estimate the three rates: the lender

discount rate, ρ, the firm’s cost of capital, rfirm, and the social cost of capital, rsocial.

4.1 Data Sources

We rely on the FR Y-14Q dataset (Schedule H.1). This is a quarterly regulatory dataset

maintained by the Federal Reserve for stress testing purposes, which contains information

on individual loan facilities held in the books of the top 30 to 40 bank holding companies

(BHCs) in the US. The Y-14 includes all loan facilities exceeding $1 million and we consider

data in the period ranging from 2014Q4 to 2023Q4. Importantly for the purposes of our

analysis, the Y-14 contains detailed characteristics of credit facilities such as facility size,
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origination date and maturity, interest rate or spread, interest rate variability, and the type

of loan. Additionally, the Y-14 also covers BHC’s risk assessments for each borrower, which

include estimates for the 1-year probability of default and loss given default. The probability

of default is typically estimated using internal default models that have to be approved by

regulators. While there is scope for some discretion in the assignment of these default

probabilities (Plosser and Santos, 2018), these models are subject to standardized guidelines

following Basel II (BCBS, 2001). We focus on term loans issued to non-governmental and

nonfinancial companies based in the US. Our unit of observation is a loan origination. We

do not include credit lines due to lack of information about the fee structure, which would

be needed to price these facilities. Appendix B contains a detailed description of the data

cleaning procedure and sample restrictions.

In terms of coverage, Faria-e-Castro et al. (2024) show that the FR Y-14Q Schedule H.1

accounts for 91% of Commercial & Industrial lending undertaken by the 25 largest banks

in the US (FRED mnemonic: CIBOARD), and 55% of all Commercial & Industrial lending

undertaken by all commercial banks in the US (FRED mnemonic: BUSLOANS). Our focus

in term loans and relatively stringent cleaning procedures leave us with a total of 61,910

loans.

4.2 Mapping the Model to the Data

An important difference between the model and the data is the payment structure of

loans. In the model, for tractability, we assume that firms borrow in long-term debt that

is modeled as a perpetuity with geometrically decaying coupons. In the data, on the other

hand, we focus our analysis on term loans with a fixed maturity. This section shows how we

map model objects to the data, and how we exploit the Y-14 data to retrieve estimates of

the lender’s discount rate, ρ, the firm’s cost of capital, rfirm, and the social cost of capital,

rsocial.

Consider a generic term loan with principal value B, maturity T , payment schedule

{Dt}Tt=1, repayment probability P assumed to be constant over time, and loss given default
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LGD, also constant over time.7 The break-even condition for a lender with discount rate ρ

is given by:

B =
T∑
t=1

[
P tDt + P t−1(1− P ) (1− LGD)B

(1 + ρ)t

]
,

Assume now that the loan is a non-amortizing term loan, with each payment consisting of

interest over the life of the loan, and the final payment consisting of a lump-sum principal

repayment. Thus Dt = rtB for t < T and DT = (1 + rT )B. The interest rate rt is either a

fixed interest rate, or a fixed spread over a floating benchmark rate. We can then rewrite

the break-even condition at origination as:

1 =
T∑
t=1

[
P tE0 (rt) + P t−1(1− P ) (1− LGD)

(1 + ρ)t

]
+

P T

(1 + ρ)T
, (8)

This equation balances the present value of expected payments from the borrower against

the lender’s opportunity cost, ensuring that the lender breaks even. For a fixed-rate term

loan, data on (P,LGD, T, r) allows us to solve this equation for the match-specific lender’s

discount rate ρ.

Floating Rate Loans. The data has loans with either fixed or floating rates. To estimate

ρ for floating rate loans, it is necessary to obtain estimates of E0 (rt), the expected interest

rate. Floating rate loans typically charge a reference rate plus a spread. For our analysis, we

use smoothed daily yield curve estimates provided by the Federal Reserve Board, based on

the methodology described in Gürkaynak et al. (2007). Under the expectations hypothesis,

long-term interest rates are assumed to reflect the market’s expectations of future short-term

rates. For each floating rate loan, we compute the sequence of forward short-term interest

rates at the date of origination, and add the (fixed) loan spread to obtain a sequence of

interest rates that are used to price that loan. Using this framework, we back out E0 (rt)

7To measure the amount borrowed, B, we note that banks record loans on their books using historical-
cost accounting (Begenau et al., Forthcoming). When the loan is originated, the loan value recorded on the
books is the amount of money that the bank gave the firm.
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for each loan by combining the treasury forward rate with the loan’s spread.8 It is worth

noting majority of floating rate loans in our sample are indexed to the LIBOR/SOFR rather

than Treasury rates. However, for the period in analysis, the spread between the SOFR and

short-term Treasury rates is negligible. In the absence of readily available forward curve

estimates for the LIBOR or SOFR, we treat them as identical to the Treasury curve.

Lender’s Discount Rate. Proposition 3 characterizes the lender’s discount rate, ρ, in

the context of fixed interest rate loans.

Proposition 3 (Lender’s Discount Rate). For a fixed interest rate loan:

1 + ρi,t = Pi,t (1 + ri,t) + (1− Pi,t) (1− LGDi,t) .

Where ri,t is the fixed interest rate on the loan. This expression reflects the lender’s

return, accounting for repayment in non-default states and recovery in default states. A

key result for fixed rate loans is that ρi,t is independent of the loan’s maturity Ti,t, which

simplifies its calculation and interpretation.

For variable rate loans, however, the calculation of ρi,t requires a numerical solution of

the break-even condition presented in equation (8).

Firm’s Cost of Capital. Returning to the firm’s cost of capital of Proposition 1, we can

estimate Λ for term loans, and then solve for rfirm. Proposition 4 provides an equation to

estimate Λ directly from the data.

Proposition 4 (Firm’s Cost of Capital). We can solve for Λi,t as:

Λi,t =
(1− Pi,t) (1− LGDi,t)

1 + ρi,t − (1− Pi,t) (1− LGDi,t)
.

8More specifically, the estimate for the reference rate n years ahead at time t is given by ft(n, 0) =
β0 + β1 exp(−n/τ1) + β2(n/τ1) exp(−n/τ1) + β3(n/τ2) exp(−n/τ2) (equation 21 of their paper), where es-
timates for (β1, β2, β3τ1, τ2) are regularly updated by the Board of Governors and available at https:
//www.federalreserve.gov/data/nominal-yield-curve.htm for each date. We compute the sequence
of forward rates at loan origination, and add the fixed spread to obtain an estimate for the interest rate at
each repayment point in time.
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This allows us to write the firm’s cost of capital as:

1 + rfirmi,t =
1 + ρi,t
1 + Λi,t

= (1 + ρi,t)− (1− Pi,t)(1− LGDi,t)︸ ︷︷ ︸
Expected Recoveries

.

In this expression, (1 − Pi,t)(1 − LGDi,t) represents expected recoveries, capturing the

key difference between ρi,t and rfirmi,t : lenders benefit from expected recoveries, but borrowers

get zero profit in the default state, regardless of whether the lender recovers anything on the

loan.

For fixed interest rate loans, we can use the expression derived in Proposition 3 to simplify

the firm’s cost of capital to:

1 + rfirmi,t = (1 + ri,t)Pi,t,

where ri,t is the fixed interest rate. This formula reflects how the borrower’s cost adjusts

based on the likelihood of repayment and default outcomes. As a result, we are able to

measure the firm’s cost of capital for each loan in the data at origination.

Social Cost of Capital. We can also use the data to estimate the social cost of capital,

rsociali,t . For measurement, we specialize and assume that the liquidation technology is linear,

meaning it takes the form φi (ki) = φi ·ki. Combining with Equation (7), this yields a formula

for rsociali,t in terms of objects in the data.

Proposition 5. Assume a linear liquidation technology. The social cost of capital is then:

1 + rsociali,t =
(
1 + rfirmi,t

)
Mi,t + (1− Pi,t) · (1− LGDi,t) · levi,t

= (1 + ρi,t)Mi,t + (levi,t −Mi,t) · (1− Pi,t) · (1− LGDi,t)

where levi,t := Qi,t·bi,t+1

ki,t+1
is the firm’s leverage ratio.

In our empirical analysis, we will set the price feedback multiplier Mi,t = 1.9 Under that

calibration, the social cost of capital simplifies further:
9We show that this is a good assumption in Appendix B.2, where we estimate this variable in the data

and find a distribution extremely concentrated around 1.
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1 + rsociali,t = 1 + ρi,t︸ ︷︷ ︸
Matching efficiency

+(levi,t − 1) · (1− Pi,t) · (1− LGDi,t)︸ ︷︷ ︸
Financial Frictions

(9)

The social cost of capital is thus equal to the lender’s discount rate (i.e., matching

efficiency), plus a term that reflects financial frictions related to default and recovery. This

latter term reflects the tension between lenders and borrowers. The presence of this term

also implies that whether the social return on capital exceeds the lender’s discount rate or

not is a function of whether firm leverage exceeds 1 or not. This is due to the following:

lenders care about average recovery per dollar of debt, φi(ki)/bi, which is equal to 1−LGDi

in the data. The planner, on the other hand, cares about the marginal recovery φ′
i(ki), which

is equal to (1− LGDi) · levi in the data. The two coincide when levi = 1, and so the social

cost of capital equals the lender’s discount rate in that case.

5 Empirical Results

5.1 Summary Statistics

We provide summary statistics for key variables in Table 1. Our unit of observation is a

loan origination, and so all reported firm financials correspond to the financials of the quarter

in which that origination took place. The average annual loan interest rate in our sample

is 4.17%. These loans have an average expected default probability of 1.42% over the next

year, and banks expect to lose, on average, 34.5% of the outstanding value of the loan in the

event of default. As a result, the lender’s discount rate, ρ, averages 3.75%.10 The social cost

of capital and firm’s cost of capital are even lower, at 3.54% and 2.82% respectively.

Interest rates vary across loans, with a standard deviation of 1.7%, reflecting heterogene-

ity both within and across time. The lender’s discount rate shows similar heterogeneity, with
10The negative covariance of r and P means that the average ρ is lower than we might have expected

from the raw averages of P , r, and LGD. For fixed rate loans, 1 + ρ = P (1 + r) + (1 − P )(1 − LGD); the
average value of P (1 + r) will be brought down by the fact that P is low when (1 + r) is high.
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a standard deviation of 1.7%. In contrast, the social cost of capital and firm’s cost of capital

have higher heterogeneity, with standard deviations of 1.88% and 2.75%, respectively.

Why are the variances of the lender’s discount rate and the contractual interest rate

similar? To build intuition, we can focus on the formula for the lender’s discount rate, ρ,

for fixed rate loans. With some rearrangement, the lender’s discount rate can be expressed

as ρ = r − (1− P )(r + LGD). Since r is small at annual frequencies compared to LGD, we

can use the approximation ρ ≈ r − (1− P ) · LGD. This yields the variance decomposition

V [ρ] ≈ V [r] + V [(1− P ) · LGD]− 2 · C [r, (1− P ) · LGD] (10)

The variance of ρ is similar to the variance of r because the variance of expected losses,(1−

P ) · LGD, is offset by the covariance term: interest rates are higher when the lender’s

expected losses are high.

We view these results as a vindication for our method of estimating the cost of capital.

If our observed measures of default probabilities and recovery rates were just noise, then

the variance of the lender’s discount rate would be substantially greater than the variance

of interest rates: the covariance term would be zero, and the term V [(1− P ) · LGD] would

push the variance of ρ substantially above the variance of r. Instead, the variance of the

cost of capital is similar to that of the interest rate, suggesting that default probabilities

and recovery rates covary with interest rates in the way that we would expect in a financial

market that is close to efficient.

5.2 Averages by Quarter of Origination

We begin by analyzing the time series of average values, by quarter of origination. The

key inputs into our measures of the cost of capital are the interest rate, default probability,

and loss given default. We first analyze the behavior of these averages over time, in Figure 1.

We separate the interest rate time series into interest rates on fixed-rate loans and the spread

for variable-rate loans. During the time period we study, interest rates fall and then rise

concurrent with the movement of monetary policy; average spreads are very stable, ranging
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Table 1: Summary Statistics

mean sd p10 p50 p90
Interest rate 4.17 1.69 2.21 3.93 6.59
Maturity (yrs) 6.85 4.64 3.00 5.00 10.25
ρ (%) 3.75 1.69 2.05 3.69 5.88
rfirm (%) 2.82 2.75 0.87 3.04 5.26
rsocial (%) 3.54 1.88 1.77 3.53 5.71
Prob. Default (%) 1.42 2.37 0.19 0.82 2.85
LGD (%) 34.50 13.20 16.00 36.00 50.00
Loan amount (M) 10.77 68.81 1.11 2.55 22.64
Sales (M) 1,254.73 5,923.53 2.17 58.80 1,556.58
Assets (M) 1,770.83 8,956.78 1.06 35.52 1,792.00
Leverage (%) 72.03 24.57 42.57 71.17 100.00
Return on assets (%) 22.61 29.05 4.68 15.56 44.04
N Loans 62687
N Firms 38587
N Fixed Rate 31540
N Variable Rate 31147

from 1.9% to 2.3%. Default probabilities show a modest upward secular trend, along with a

temporary spike around the time of the COVID-19 pandemic. Expected losses given default

fall around the onset of the pandemic, implying that banks expect larger recoveries in the

event of default. Note, however, that the magnitude of the change in recoveries is sufficiently

small that it has little effect on ρ, since this change is multiplied by the (small) probability

of default.

Next, in Figure 2, we plot the lender’s discount rate, ρ, the firm’s cost of capital, rfirm,

and the social cost of capital, rsocial, against the five-year treasury rate. The average lender’s

discount rate is similar to the average rsocial, and both rates covary strongly with the five-year

treasury rate. There is an average spread of roughly 164 basis points between the lender’s

discount rate and the treasury rate, although it has a delayed reaction to movements in

treasury rates: the spread is initially stable at 150 basis points, then rises above the average

when treasury rates fall and falls below the average once treasury rates rise again. Note that

the lender’s discount rate is already adjusted for default risk, and so this cannot explain the
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Interest Rate (Fixed Only) Interest Rate Spread (Variable Only)

Default Probability Loss Given Default

Figure 1: Average values of key inputs by quarter of origination: contractual interest rate
(fixed rate loans only), interest rate spread (floating rate loans only), probability of default,
and loss given default.

spread relative to treasuries. While the social cost of capital, rsocial is quite close to ρ, the

firm’s cost of capital, rfirm, tracks the treasury rate more closely with a small spread.

While our analysis takes into account the maturity of the loan, there are potential con-

cerns that loans of different maturities may face different rates, even if they reflect a constant

spread on a (time-varying) risk-free rate. To mitigate these concerns, in Appendix B.5, we

redo our analysis focusing on fixed-rate, five-year loans. This is the most common maturity

for fixed rate loans. Focusing on fixed-rate loans is convenient because it is not sensitive to

the term structure of the loan, nor to estimates of expected future rates derived from the
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Figure 2: Averages by quarter of origination for the lender’s discount rate (ρ), firm cost of
capital (rfirm), social cost of capital (rsocial), and time series for the five-year Treasury rate.

yield curve. Five-year loans are also convenient because they allow direct comparison to

the five-year treasury rate. The average cost of capital for fixed-rate, five-year loans is very

similar to the overall sample: there is a roughly 150 basis point spread relative to five-year

treasuries, following the same dynamics as in the overall sample.

5.3 Cross-Sectional Heterogeneity

While the means display similar movements, they mask a substantial amount of cross-

sectional heterogeneity in these measures. In this section, we show that this heterogeneity is

substantial across measures even after controlling for time, lender and firm fixed effects. To

this end, we follow the variance decomposition of Daruich and Kozlowski (2023). To ensure
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that we can estimate firm level fixed effects we subset our sample to the set of firms with five

or more distinct loans. We then progressively add time, lender-time, and firm-lender-time

fixed effects, building to the fixed-effects specification displayed in Equation 11 below, where

i indexes firms, τ represents the quarter of origination, b indexes lenders, and l represents

the particular loan.

rτbil = ατ + γτb + δτbi + ετbil (11)

The results are in Table 2, for the contractual interest rate, lender’s discount rate, firm

cost of capital, and social cost of capital. The time fixed effect explains 72% of the variance

in interest rates and 62% of the variance in the lender’s discount rate. For all four vari-

ables, adding in lender-time fixed effects explains a negligible share of the variance (at most

4.25% for rfirm), suggesting that heterogeneity across lenders is not an important source

of heterogeneity in interest rates or the different measures of cost of capital. Adding in

firm-lender-time fixed effects explains an additional 13% to 20% of the variance of these

measures. Finally, notice that the loan-level variance, after controlling for firm-lender-time

fixed effects, remains substantial, ranging from 13% for contractual interest rates up to 42%

for the firm cost of capital. To the extent that our measure of misallocation depends on the

variance of rsocial, these results show that a significant share of that variance is loan-specific

and cannot be accounted for by either time, lender, or borrower effects.

Time Bank Firm Loan
Contractual rate 71.88 1.63 13.45 13.04
Lender discount rate, ρ 61.94 3.08 14.02 20.96
Firm cost of capital, rfirm 33.23 4.25 20.12 42.4
Social cost of capital, rsocial 53.84 3.87 16.21 26.08
N Firms 1681
N Loans 14738

Table 2: Variance decomposition for contractual interest rates and different measures of the
cost of capital (ρ, rfirm, and rsocial) using equation 11.

In Appendix B.3 we further explore the correlation between the cost of capital and firm-
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level covariates such as leverage, return on assets, and assets. Of the three covariates, the best

predictor is the return on assets; interest rates and the cost of capital are consistently higher

at firms with high return on assets. Although we cannot attach a causal interpretation to the

estimated coefficients, this would be consistent with a model where causality runs from the

cost of capital to firm decisions: firms with a higher cost of capital will demand a high return

on their investments. Yet perhaps more notable is the very low R2. The return on assets

explains between 2 and 3% of the variance, depending on the measure of the cost of capital,

with other covariates explaining less than 1%. Firm-level covariates explain approximately

none of the variance in the cost of capital.

5.4 Misallocation

What does the heterogeneity in the cost of capital imply for the cost of misallocation? To

answer this we use our approximate formula for misallocation from Corollary 1, calibrating

δ = 0.06.11 We compute this statistic by quarter of origination, in order to focus on within-

period misallocation. Our model does not contain aggregate shocks, and we would thus

need a richer model to study misallocation across time. We interpret our results below as

reflecting what misallocation would be for an economy that remained in the same steady

state.

We find that the misallocation of capital resulting from heterogeneity in the cost of

capital, plus the financial friction term, is small. We plot our estimates in Figure 3. In

the period before the COVID pandemic the implied misallocation is flat and low: formally

reallocating capital across firms would increase aggregate output by 0.54%. This number

rises with the onset of the pandemic, averaging 1.11% during 2020 and 2021, before falling

back to a somewhat elevated 0.76% starting in 2022.

Our model of misallocation studies an economy in steady-state, which complicates the
11Note that in steady state δ = I/Y

K/Y . In the data, at the annual frequency, the capital-output ratio is
about 3 while the investment-output ratio is about 0.18 (we measure capital as BEA Current-Cost Net Stock
of Fixed Assets and investment is GDPI in FRED). Hence, at an annual frequency, δ = 0.06. Additionally,
recall that, as previously explained, we set E = 1/2 and M = 1.
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interpretation of short-run changes in the distribution of the cost of capital. A temporary

shock to the dispersion of rsocial among newly originated loans will have only limited effects

on the dispersion of rsocial in the full population of firms. Moreover, a steady-state model

with no aggregate shocks is not well suited to studying aggregate dynamics in response to a

shock. Thus, we caution against over-interpreting the transitory rise in implied misallocation

during the pandemic: if the increased dispersion of rsocial were permanent, then misallocation

would rise by 0.6% in steady state, but it is not obvious how much misallocation actually

rose in response to the transitory shock. Instead, our main takeaway from the analysis is

that in “normal times” (e.g. before the pandemic), heterogeneity in rsocial implies a very

small cost of misallocation in steady state.

5.5 Decomposing Misallocation

To further understand the drivers of misallocation, we decompose it into the component

coming from heterogeneous cost of capital, ρ, and the component coming from heterogeneity

in the financial frictions term. We perform two counterfactuals. In the first, we replace ρ

with its average value for that quarter. This tells us how much misallocation arises from

heterogeneity in the financial frictions term. In the second counterfactual we set the financial

frictions term equal to its average value within the quarter, which allows us to measure the

misallocation arising from heterogeneity in ρ. Note that neither counterfactual changes the

within-quarter average of rsocial, and thus the results are driven by changes in the variance

of rsocial.

We show the results of these decompositions in Figure 4. Misallocation is mostly driven

by heterogeneity in the cost of capital. In the pre-pandemic period, if ρ is equalized across

firms then the cost of misallocation falls to just 0.07% instead of 0.54%. In contrast, the

cost of misallocation in the counterfactual with a constant financial friction is 0.39%. Note

that there is an interaction between ρ and the financial frictions term as total misallocation

exceeds the sum of the two counterfactuals. During the pandemic period (2020-2021), there

is a significant increase in total misallocation, which more than doubles. While still small, the
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Figure 3: Time series for the cost of misallocation, using the formula in Corollary 1. The
cost of misallocation is the percentage difference between actual output and output in a
counterfactual economy where the planner is free to reallocate physical capital across firms,
keeping exit decisions fixed.

financial frictions term also doubles in importance. Quantitatively, the large increase comes

from an increased dispersion in ρ. In the post-pandemic period (2022-2024), misallocation

remains 40% more elevated than in the pre-pandemic period. Once again, ρ plays the

dominant role: misallocation would be only 0.11% in the constant ρ counterfactual.

In Appendix B.5, we repeat our misallocation analysis, focusing on five-year, fixed-rate

loans. We find that the results are very similar to those of our main analysis.12 This reinforces
12In the robustness sample, there is also a brief spike in the dispersion of rsocial earlier in the period, but

it only lasts for one quarter.
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Figure 4: Decomposing the cost of misallocation. The “benchmark” columns correspond to
the averages for the cost of misallocation in Figure 3 in the respective time period. “Constant
ρ” is the average cost of misallocation in a counterfactual exercise where we set the estimated
ρ for each newly originated loan to be equal to the average ρ for that quarter. “Constant
financial frictions” repeats the exercise for a counterfactual where we keep the second term
in equation 9 equal to its average value for each quarter, for all newly originated loans.

the robustness of our results, confirming that heterogeneity in the cost of capital across firms

is not driven by differences in maturity or term structure.

5.6 The 2020-21 increase in misallocation

Our analysis in Figure 4 reveals that while both components of the social cost of capital

contribute to an increase in misallocation in the 2020-21, the heterogeneity in ρ is quanti-

tatively the most important factor. Figure 5 shows the mean and standard deviation of ρ.

First, as already shown in Figure 2 the average ρ follows the risk-free interest rate. Hence,

as risk free rates decreased during 2020-2021, the average ρ also decreased. Second, the
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standard deviation of ρ increases during this period. Both these movements contribute to

an increase in the coefficient of variation for ρ. The increased dispersion in ρ translates into

an increased dispersion of rsocial which directly affects our measure of misallocation.

Figure 5: Mean and standard deviation of the lender’s discount rate, ρ.

We can further understand the changes in the moments of ρ with the approximation in

Equation (10), which allows us to approximate the coefficient of variation for ρ as a function

of the means, variances, and covariance between the contractual interest rate r and the

expected loss (1− P )LGD:

V [ρ]0.5

E [ρ]
u

(V [r] + V [(1− P )LGD]− 2COV [r, (1− P )LGD])0.5

E [r]− E [(1− P )LGD]

We use this expression to consider three counterfactuals: one in which the mean and variance

of contractual interest rates are kept constant at their sample averages, one in which the

mean and variance of the expected loss are kept constant, and one in which the covariance
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between the two is kept constant. The results of this exercise are presented in Figure 6, where

“Benchmark” refers to the actual coefficient of variation for ρ. While all factors contribute

to the rise of the CV during the 2020-22 period, changes in the distribution of contractual

interest rates are by far the most important factor.

Let us consider the counterfactual scenario of a constant contractual rate (“constant r”).

In this exercise, the mean and variance of expected losses vary, but the mean and variance

of contractual interest rates remain fixed. As shown by the red dashed line in Figure 6,

under this counterfactual, the dispersion in ρ would have increased only modestly—from

0.27 to 0.46—representing a change of only 0.19, while in the benchmark the dispersion of ρ

increased by 0.48. This finding implies that a substantial portion of the observed increase in

the dispersion of ρ in the benchmark scenario is driven by increased dispersion in contractual

rates.

What explains the rise in contractual rate dispersion during 2020–2021? Our inspection

of the microdata reveals that this shift was primarily driven by very risky loans—those with

high expected losses—being underpriced, i.e., offered with unusually favorable contractual

rates. As a result, the implied ρ for these loans was quite low, contributing significantly to

the overall increase in ρ dispersion.

We hypothesize that this pattern emerged due to broad-based fiscal and monetary in-

terventions implemented during 2020–2021 to support the economy. In particular, many

of these programs involved lending to or rescuing firms and sectors under financial distress

(such as the Paycheck Protection Program, the Main Street Lending Program, Primary Mar-

ket Corporate Credit Facility, or the Secondary Market Corporate Credit Facility, among

others). Our hypothesis is that lenders inferred an implicit government guarantee for many

of these loans: if risky borrowers were to default, lenders believed the government would

likely intervene to cover the losses.

This perceived guarantee introduced a moral hazard problem, encouraging lenders to

take on more risk than they otherwise would have. Ultimately, this behavior led to increased
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misallocation of credit. Absent such implicit guarantees, we argue that lenders would have

priced risk more accurately—leading to greater allocative efficiency.

Risk premia and aggregate shocks. Alternatively, a plausible explanation for the rise

in ρ is that it reflects risk premia, as lenders require an increased compensation for risk during

an extremely uncertain and volatile period. Furthermore, since that different firms may be

differentially exposed to aggregate shocks, the existence of heterogeneity in risk premia may

not necessarily imply the presence of misallocation (David et al., 2022). Our framework is

set in steady state and cannot accommodate aggregate shocks that would trigger increases in

risk premia. An increase in risk premia for some firms, say firms whose cash flows were more

exposed to COVID-19 disruptions, should raise the skewness of the distribution of ρ. What

we find is the opposite: not only the average ρ falls from 3.6% (2014-19) to 2.7% (2020-21),

but its skewness also becomes more negative (from -2.6 to -3.5). Thus, if anything, the “left

tail” becomes more pronounced. This is at odds with an explanation related to the rise in

risk premia and, if anything, suggests that risk premia seem to have fallen during this period,

potentially due to explicit and implicit guarantees.

5.7 Cross-Country Comparison

Table 3: Cross-Country Comparison of Cost of Capital

Pakistan Pakistan Brazil Mexico United States
1980–1981 1996–2002 2006–2016 2003–2022 2014–2024

Average contractual rate, % 78.7 14.1 83.0 16.8 3.9
St deviation of contractual rate, % 38.1 2.9 93.3 5.2 1.5
Default probability, % 2.7 16.9 4.0 8.9 1.4
Recovery rate (World Bank), % 42.8 42.8 18.2 63.9 81.0
Implied Misallocation, % 4.9 2.2 21.5 1.7 0.6

Notes: Data for Pakistan (1980–1981) are from Aleem (1990), and for 1996–2002 from Khwaja and Mian
(2005). Brazilian data are from Cavalcanti et al. (2021), and Mexican data from Beraldi (2025). Recovery
rates (1− LGD) are country-level estimates obtained from the World Bank’s Doing Business database.

Finally, in Table 3, we compare our results to related values for other countries. Our

method for deriving the distribution of rsocial incorporates the joint distribution of interest
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Figure 6: Decomposition of the coefficient of variation of ρ.

rates, default probabilities, expected losses given default, and leverage. Although prior work

has not combined all of these variables in the ways necessary to apply our method we can still

learn something from more commonly reported statistics. We focus on papers that report

summary statistics for a representative sample of bank loans, or moneylenders in the case

of Aleem (1990). We are able to find five such papers that report the mean and standard

deviation of interest rates as well as the mean probability of default. For comparison, we also

use our data to provide the same statistics for the United States.13 Relative to less developed

countries, the United States stands out for a low mean and low standard deviation of interest

rates. However there is significant heterogeneity among the results for other countries, which
13Cavalcanti et al. (2021) report the spread relative to deposit rates; we compute the mean interest rate

by adding the mean deposit rate, which they report in the paper, to the mean spread. Beraldi (2025) reports
the spread relative to the Mexican 28-day interbank rate; we compute the mean interbank rate over this
time period and add this to the mean spread. For both papers, we use the distribution of spreads to get the
standard deviation of the spread. Beraldi (2025) reports quantiles instead of the standard deviation, so we
use the 90/10 percentile range and a normal approximation to infer the standard deviation.
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does not appear to simply track the level of development. Bank loans in Pakistan and Mexico

have a standard deviation of interest rates that is only modestly higher than in the United

States, while bank loans in Brazil and loans from moneylenders in Pakistan have an extremely

high standard deviation of interest rates.

We can attempt to use these statistics to compute misallocation, at the cost of strong

assumptions. We use recovery rates from the World Bank’s Doing Business database to

provide information on expected losses given default. Since we do not have information on

firm leverage, we use the lender’s cost of capital, ρ, in place of the social cost of capital,

rsocial. We then use the fixed rate formula for ρ and assume that the probability of default

and the losses given default do not vary across firms. This allows us to compute a cost of

misallocation, which we show in the last column. The cost of misallocation we compute for

the United states is similar to the actual cost that we computed earlier, although this is no

guarantee that the same is true for other countries.

There are two main takeaways from our misallocation analysis. First, the United states

seems to have the most efficient credit markets of the countries in our table: misallocation

is moderately higher for bank loans in Mexico and Pakistan, and substantially higher in

Brazil and among Pakistani moneylenders. However the relationship between development

and credit market efficiency varies across settings, even for countries like Brazil and Mexico

that are at similar levels of economic development.

6 Conclusion

This paper develops a novel methodology to estimate the cost of capital using credit

registry microdata, and examines the implications of dispersion in the cost of capital for

misallocation. We show, in a dynamic corporate finance model, the connection between the

lender’s cost of capital, the firm’s cost of capital, and the social cost of capital, and how to

measure these objects in the data. We also show how the mean and variance of the social cost

of capital can be used as sufficient statistics to measure the output losses from misallocation
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that arise from credit market imperfections.

After developing this general methodology, we apply it to credit registry data for the

United States. We find that although the cost of capital varies across firms, the resulting

misallocation is modest in normal times, resulting in output losses of only 0.5%. However,

dispersion in the social cost of capital among newly originated loans rose dramatically during

the COVID-19 pandemic, driven by a rise in the dispersion of lender discount rates. Un-

derstanding the causes of this rise in dispersion, as well as the consequences for aggregate

productivity, is an important area for future research. Moreover, comparing the distribution

of the cost of capital in the United States to the distribution in other economies, especially

less developed economies, will help us better understand how financial markets contribute

to development.
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Appendix

A Proofs

Proof of Proposition 1.

Et

[
Pt+1 (θ + (1− θ)Qt+1)

Qt

]
= (1 + ρ)

Et [Pt+1 (θ + (1− θ)Qt+1)]

Et [Pt+1 (θ + (1− θ)Qt+1)] + Et [(1− Pt+1)φ(k′)/b′]

= (1 + ρ)

(
1 +

Et [(1− Pt+1)φ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

)−1

= (1 + ρ) (1 + Λ)−1

where

Λ ≡ Et [(1− Pt+1)φ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

Derivation of Equation 3. We combine the first-order conditions for capital and for debt.

Recall the recursive formulation of the model.

V (k, b, z) = max
k′,b′

π (k, b, z, k′, b′) + βE [max {V (k′, b′, z′) , 0} | z]

π (k, b, z, k′, b′) = f (k, z) + (1− δ) k − k′ − θb+Q (k′, b′, z, ρ) (b′ − (1− θ) b)

The firm’s maximization yields the first-order conditions for tomorrow’s capital, k′, and

tomorrow’s debt, b′.

0 =
∂π (k, b, z, k′, b′)

k′ + βP (k′, b′, z)E
[

∂

∂k′V (k′, b′, z′) | z, V > 0

]
0 =

∂π (k, b, z, k′, b′)

b′
+ βP (k′, b′, z)E

[
∂

∂b′
V (k′, b′, z′) | z, V > 0

]
where P (k′, b′, z) is the probability of not defaulting, and V > 0 indicates that the firm

did not default.

We next use the Envelope Theorem to note that ∂V (k′,b′,z′)
∂k′

= ∂
∂k′

π (k′, b′, z′, k′′, b′′) and
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similarly to note that ∂V (k′,b′,z′)
∂b′

= ∂
∂b′

π (k′, b′, z′, k′′, b′′). Our first-order conditions become:

0 =
∂π (k, b, z, k′, b′)

k′ + βP (k′, b′, z)E
[

∂

∂k′π (k′, b′, z′, k′′, b′′) | z, V > 0

]
0 =

∂π (k, b, z, k′, b′)

b′
+ βP (k′, b′, z)E

[
∂

∂b′
π (k′, b′, z′, k′′, b′′) | z, V > 0

]
Next, we take derivatives of the profit function to plug into our first-order conditions.

We have:

∂π (k, b, z, k′, b′)

k
= fk (k, z) + (1− δ)

∂π (k, b, z, k′, b′)

b
= −θ − (1− θ)Q (k′, b′, z)

∂π (k, b, z, k′, b′)

k′ = −1 +
∂Q (k′, b′, z)

∂k′ (b′ − (1− θ) b)

∂π (k, b, z, k′, b′)

b′
= Q (k′, b′, z) +

∂Q (k′, b′, z)

∂b′
(b′ − (1− θ) b)

Plugging these expressions in, our first-order conditions now become:

0 = −1 +
∂Q (k′, b′, z)

∂k′ (b′ − (1− θ) b) + βP (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0]

0 = Q (k′, b′, z) +
∂Q (k′, b′, z)

∂b′
(b′ − (1− θ) b) + βP (k′, b′, z)E [−θ − (1− θ)Q (k′′, b′′, z′) | z, V > 0]

We next combine these two first-order conditions. Rather than thinking about investment

that is financed through earnings, we want to instead imagine that the firm is financing a

marginal unit of capital through borrowing. To do this, we multiply the first-order condition

for debt by

−
1− ∂Q(k′,b′,z)

∂k′
(b′ − (1− θ) b)

Q (k′, b′, z) + ∂Q(k′,b′,z)
∂b′

(b′ − (1− θ) b)

which reflects the amount of new debt needed to finance a marginal unit of capital. The

denominator reflects the amount raised by selling a unit of debt, Q (k′, b′, z), plus an ad-

justment factor, ∂Q
∂b′

(b′ − (1− θ) b), that reflects how the change in the price of debt affects

the cost of borrowing. Similarly, the numerator reflects how an increase in capital lowers is

partly self-financing, because it lowers the cost of borrowing.
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Combining the two equations then yields:

βP (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0] =

1− ∂Q(k′,b′,z)
∂k′

(b′ − (1− θ) b)

Q (k′, b′, z) + ∂Q(k′,b′,z)
∂b′

(b′ − (1− θ) b)

× βP (k′, b′, z)E [θ + (1− θ)Q (k′′, b′′, z′) | z, V > 0]

Further manipulation then yields:

P (k′, b′, z)E [fk (k
′, z′) + (1− δ) | z, V > 0] =

1− ∂Q(k′,b′,z)
∂k′

(b′ − (1− θ) b)

1 + ∂Q(k′,b′,z)
∂b′

· (b′ − (1− θ) b) /Q (k′, b′, z)

× P (k′, b′, z)E
[
θ + (1− θ)Q (k′′, b′′, z′)

Q (k′, b′, z)
| z, V > 0

]
= M ·

(
1 + rfirmt

)
where M is given by the following formula:

M =
1− ∂Q

∂k′
(b′ − (1− θ) b)

1 + ∂Q
∂b′

· (b′ − (1− θ) b) /Q

=
1− ∂ logQ

∂ log k′
· Q
k′
(b′ − (1− θ) b)

1 + ∂ logQ
∂ log b′

· Q
b′
(b′ − (1− θ) b) /Q

=
1− ∂ logQ

∂ log k′
· Q·b′

k′
(b′−(1−θ)b)

b′

1 + ∂ logQ
∂ log b′

· (b′−(1−θ)b)
b′

=
1− γ · Q·b′

k′
· ∂ logQ
∂ log k′

1 + γ · ∂ logQ
∂ log b′

where γ := (b′−(1−θ)b)
b′

. This completes the proof.

Proof of Proposition 3.

1 =
T∑
t=1

(
P

1 + ρ

)t [
r +

(1− P )

P
(1− LGD)

]
+

(
P

1 + ρ

)T

Let x = P
1+ρ

so

1 =

(
r +

1− P

P
(1− LGD)

)
x

1− x

(
1− xT

)
+ xT
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Guess that 1 + ρ = (1 + r)P + (1− P ) (1− LGD)

1− x

x
=

1

x
− 1 =

(1 + r)P + (1− P ) (1− LGD)

P
− 1 = r +

1− P

P
(1− LGD)

And, therefore

1 = 1
(
1− xT

)
+ xT

which validates the guess.

Proof of Proposition 4. Rearranging Equations 1 and 2, we have

1 + ρ =
E
[
Pt+1 (θ + (1− θ)Qt+1) + (1− Pt+1)

φ(kt+1)
bt+1

∣∣∣ kt+1, bt+1, zt

]
Qt

= 1 + rfirmt + E
[
(1− Pt+1)

φ(kt+1)

Qt · bt+1

∣∣∣∣ kt+1, bt+1, zt

]
= 1 + rfirmt + (1− P ) · (1− LGD)

with the last line using our formula for LGD at origination.

Proof of Proposition 5. We start with Equation 7, then we use the fact that, by assumption,

φ′ (kt+1) = φ (kt+1) /kt+1 , and then we plug in the definitions of lev and LGD. This yields:

1 + rsocial =
(
1 + rfirm

)
M+ (1− P ) · φ′ (kt+1)

=
(
1 + rfirm

)
M+ (1− P ) · φ (kt+1)

kt+1

· Qtbt+1

Qtbt+1

=
(
1 + rfirm

)
M+ (1− P ) · (1− LGD) · lev

Plugging in our formula for rfirm from Proposition 4 yields
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1 + rsocial = (1 + ρ− (1− P ) (1− LGD))M+ (1− P ) · (1− LGD) · lev

= (1 + ρ)M+ (lev −M) · (1− P ) (1− LGD)

B Data

B.1 Details on Data Cleaning and Construction

While the FR Y-14Q Schedule H.1 data goes back to 2011, we keep only data from

2014Q4 due to data quality and consistency of reporting issues.

Borrowers. We drop all loans to borrowers without a Tax Identification Number. We keep

only Commercial & Industrial loans to nonfinancial U.S. addresses, i.e. lines reported on FR

Y-9C equal to 3, 4, 8, 9, and 10. We drop all borrowers with NAICS codes 52 (Finance and

Insurance), 92 (Public Administration), 5312 (Offices of Real Estate Agents and Brokers),

and 551111 (Offices of Bank Holding Companies), as some financial companies are classified

under the later two NAICS codes in our sample.

Loans. We drop all loans with a negative committed exposure, or for which the utilized

exposure exceeds the committed exposure as these are likely to be mistakes. We drop all

observations for which the origination date exceeds the current date, and all those for which

the maturity date precedes the current date.

We keep only “vanilla” term loans (Facility type equal to 7), and we thus exclude Type

A, B, and C term loans, as well as bridge term loans. We keep only loans that are classified

as fixed or variable rate, and drop mixed interest rate variability loans. We keep only loans

with maturity between 1 and 10 years, thus excluding very short-term and very long-term
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loans. We keep only loans with interest rates in the 1st-99th percentiles for fixed rate loans,

and spread in the 1st-99th percentiles for variable rate loans, as some of the very high and

low rates/spreads are likely to be data errors. Additionally, we drop loans with interest rates

higher than 50% at origination. We also drop loans for which the probability of default and

the loss given default are either missing or outside of the [0, 1] intervals. We also drop loans

for which the probability of default is equal to 1, as that is an indicator that the loan is in

default.

B.2 Estimating M

In this section, we argue that our calibration of M = 1 is a good approximation. To this

end, we provide estimates of this object in the data. Recall that this object was defined as

Mt :=
1− γ × Qb′

k′
× ∂ logQ

∂ log k′

1 + γ ××∂ logQ
∂ log b′

Given estimates for the function Q, γ, and firm leverage Qb′/k′ we can compute M for

every observation (loan origination) in our data. The main challenge is to estimate Q as a

function of firm borrowing and investment. This function can either be obtained by solving

a calibrated version of our model, or estimated non-parametrically in the data. In this

subsection, we present results for the latter approach.

First, we compute Q for every loan origination in the data. In a model setting such as

ours, where loans are modeled as perpetuities that decay at a geometric rate θ, we can write

Q as the present value of all future payments, discounted at the contractual interest rate r:

Q =
θ + (1− θ)Q

1 + r
=

θ

r + θ

r is directly observed in the data, and we can apply the common approximation that θ is

equal to the inverse of the loan maturity, θ = 1/T . This allows us to compute Q for every

loan origination in the data.

The model establishes that Q is a function of firm investment k′, firm borrowing b′, as well

as the current level of productivity z. Additionally, Q should also depend on the lender’s cost
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of capital ρ. We therefore approximate (the log of) Q as a polynomial of these four variables.

We measure firm investment as (the log of) tangible assets at loan origination, firm borrowing

as (the log of) total debt owed by the firm at loan origination, firm productivity as the (the

log of) sales over tangible assets (a measure of TFPR following Hsieh and Klenow (2009)).

The lender’s cost of capital ρ is measured as in the main text. We therefore estimate:

logQi = α + βk log ki + βb log bi + βz log zi + βρρi

+βk,k(log ki)
2 + βk,b log ki × log bi + βk,z log ki × log zi + βk,ρ log ki × ρi

+βb,b(log bi)
2βb,z log bi × log zi + βb,ρ log bi × ρi

+βz,z(log zi)
2βz,ρ log zi × ρi + βρ,ρ(ρi)

2εi

The resulting estimates can be used to compute the partial derivatives of logQ with respect

to investment and borrowing. Qb′/k′ is measured in a consistent manner, as the sum of total

liabilities plus new borrowings divided by total assets plus new borrowings. Finally, we take

advantage of the fact that at the steady state, γ = θ = 1/T .

Figure 7 presents the histogram for the estimated Mi in our sample. Clearly, the distri-

bution is extremely concentrated around 1. The mean is equal to 0.996 and the median to

0.997, with a standard deviation of 0.006. Figure 8 replicates our measure of misallocation,

when computed accounting for heterogeneity in M, and compares it to our baseline, showing

that the two measures are extremely similar, both in terms of magnitudes and dynamics.

Taken together, these results suggest that our assumption that M = 1 is a good one.

B.3 Cross-sectional Heterogeneity

We also explore the correlation between the cost of capital and firm-level covariates. We

regress log(1+r) separately on log leverage, log return on assets, and log assets. We conduct

this analysis for interest rates, ρ, rfirm, and rsocial. The results are shown in Table 4. Of

the three covariates, the best predictor is the return on assets; interest rates and the cost

of capital are consistently higher at firms with high return on assets. Although we cannot

attach a causal interpretation to the estimated coefficients, this would be consistent with a
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Figure 7: Histogram for estimated Mi

model where causality runs from the cost of capital to firm decisions: firms with a higher cost

of capital will demand a high return on their investments. Yet perhaps more notable is the

very low R2. The return on assets explains between 2 and 3% of the variance, depending on

the measure of the cost of capital, with other covariates explaining less than 1%. Firm-level

covariates explain approximately none of the variance in the cost of capital.
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Table 4: Determinants of Capital Costs and Spreads

Panel A: Contractual Rate
(1) (2) (3)

log leverage 0.048∗∗∗

(0.00)
log roa 0.134∗∗∗

(0.02)
log assets -0.094∗∗∗

(0.00)
Observations 62687 1665 60437
Adjusted R2 0.002 0.017 0.009
Panel B: Lender Discount Rate

(1) (2) (3)
log leverage -0.026∗∗∗

(0.00)
log roa 0.146∗∗∗

(0.03)
log assets -0.007

(0.00)
Observations 62687 1665 60437
Adjusted R2 0.001 0.021 0.000
Panel C: Firm’s Cost of Capital

(1) (2) (3)
log leverage -0.086∗∗∗

(0.00)
log roa 0.174∗∗∗

(0.02)
log assets 0.071∗∗∗

(0.00)
Observations 62687 1665 60437
Adjusted R2 0.007 0.030 0.005
Panel D: Social Cost of Capital

(1) (2) (3)
log leverage 0.073∗∗∗

(0.01)
log roa 0.146∗∗∗

(0.03)
log assets -0.009∗∗

(0.00)
Observations 62687 1665 60437
Adjusted R2 0.005 0.021 0.000
Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.0147



Figure 8: Misallocation measure with M = 1 vs. estimated Mi
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B.4 Misallocation weighted by loan size

Figure 9: Misallocation, unweighted and weighted by loan size

B.5 Robustness: Results for Fixed-Rate Five-Year Loans
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Figure 10: Averages by Quarter of Origination (Fixed-Rate Five-Year Sample)
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Figure 11: Cost of Misallocation (Fixed-Rate Five-Year Sample)
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Figure 12: Decomposing Misallocation (Fixed-Rate Five-Year Sample)
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