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1. Introduction1

The rise in the fraction of retirees in the working-age population in the U.S.2

since the beginning of the COVID-19 pandemic has garnered attention from3

both researchers and policy-makers (Hobijn and Şahin, 2021; Montes et al.,4

2022). In late 2021, the fraction of retired individuals in the working-age5

population rose 0.7 percentage points (pp) over what the pre-pandemic trend6

predicts—close to 2 million excess retirements. This phenomenon slowed the7

recovery of the U.S. labor force participation rate (LFPR), which remained8

0.8 pp below its pre-pandemic level in May 2024. Several factors, some9

of which have been individually studied, are natural candidates to explain10

this phenomenon: (i) wealth effects due to elevated returns on assets, (ii)11

poor labor market conditions due to higher job separations, (iii) provision of12

economic impact payments, (iv) expansion of the unemployment insurance13

(UI) program, and (v) increased mortality risk. In this paper, we develop14

a unified approach to quantitatively analyze the interaction of these factors15

and decompose their contributions to the rise in retirements. Our main16

finding is that initially higher job separations and the subsequent provision17

of economic impact payments were the key drivers of increased retirements,18

which predominantly came from low-income workers.19

Our paper makes three contributions. First, we present novel empiri-20

cal results regarding the relationship between retirement decisions, wealth,21

and labor income before and after the COVID-19 episode. Using microdata22

from the Survey of Income and Program Participation (SIPP), we find that,23

in 2019, the fraction of new retirees is only slightly increasing in wealth24

quintiles but strongly decreasing in income quintiles. Importantly, we also25

find that these distributional patterns are remarkably stable between 202026

and 2021. Overall, these observations are informative for the predictions of27

our quantitative model, as they suggest that increased retirements were not28

driven by wealthier individuals but by income-poor individuals.29

Second, we construct a heterogeneous agents model that allows us to ac-30

count for potential factors behind the rise in retirements. Our framework31

incorporates frictional labor markets in an otherwise standard incomplete32

markets, overlapping generations (OLG) model. Besides making a consump-33

tion/savings decision, agents also choose their employment and labor force34

participation status, endogenizing flows in and out of retirement. The model35

also features realistic life-cycle profiles for labor income, social security pay-36

ments, heterogeneous returns on savings, and heterogeneous unemployment37
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risk. We calibrate this model to the U.S. economy in 2019, matching a se-38

ries of moments related to the distributions of wealth and labor income, as39

well as labor market flows. We validate the predictions of this model at the40

stationary equilibrium against untargeted moments, showing, in particular,41

that it captures the shares of new retirees by wealth and income quintiles.42

We use the model to quantitatively study recent labor market dynamics.43

This is important since, to the best of our knowledge, there is no relatively44

high-frequency dataset that allows us to track monthly labor market flows45

and, at the same time, contain information on wealth, returns on wealth,46

eligibility and receipt of various fiscal transfers during the pandemic, and47

mortality outcomes. This makes it necessary to use a model to understand48

recent retirement dynamics. Our main exercise consists of feeding sequences49

of exogenous shocks that represent the five channels we focus on to the sta-50

tionary state of the model. These shocks are measured from the data and51

mapped into the model without targeting any endogenous aggregate labor52

market moments or cross-sectional moments from the microdata during 2020-53

2023. These shocks capture (i) the heterogeneous movements in returns to54

wealth, (ii) the heterogeneous rise of job-separation rates across the labor in-55

come distribution, (iii) economic impact payment programs, (iv) expansion56

of UI, and (v) the increase in mortality risk that was steeper for older people.57

Third, we use the model to decompose the importance of each channel58

between 2020 and 2023. We first demonstrate that the model well captures59

both the magnitude and persistence of untargeted aggregate labor market60

moments in the data, such as excess retirements, the unemployment rate61

net of temporarily unemployment, and the employment-to-population ratio.62

Next, our decomposition exercises reveal that four of the five channels we63

consider (excluding the UI expansion) played a role in driving excess retire-64

ments, with higher job separations being a more important driver in 202065

and 2021 (explaining 91% and 72%, respectively) and economic impact pay-66

ments playing a larger role in 2022 and 2023 (explaining 100% and 136%,67

respectively). The rise in mortality risk attenuate the effects of the other68

forces, and is crucial to get the magnitudes right.69

We also compare the cross-sectional predictions of the model along the70

transition to changes in relevant moments from the microdata between 2020-71

2023 relative to 2019. We find that the model is able to broadly account72

for the rise in the average wealth, the compression of the wealth distribu-73

tion, changes in fractions of new retirees by wealth and income quintiles, and74

changes in monthly flow rates in and out of retirement. Importantly, as in75
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the data before and after the pandemic, our model predicts that new retirees76

are typically income poor, but not necessarily wealth poor. We argue that77

this result is consistent with the predictions of our decomposition exercise,78

in that the increase in retirements did not come from relatively wealthy in-79

dividuals, but from low-income individuals who experienced larger increases80

in job separations and were relatively more sensitive to fiscal transfers.81

Related literature. This paper contributes to the literature on retirement82

patterns and economic decisions of retirees in terms of consumption and sav-83

ings (De Nardi et al., 2010, 2016) as well as labor supply (Cheng and French,84

2000; Coronado and Perozek, 2003; Benson and French, 2011). Relative to85

this work, we develop an incomplete markets, OLG model with a frictional86

labor market. This model allows us to analyze how changes in labor market87

frictions and fiscal transfers—that impact the magnitude of the surplus from88

employment relative to non-employment—affect retirement decisions.89

Our paper also contributes to a recent empirical literature that focuses90

on changes in labor market participation and retirement patterns after the91

pandemic (Hobijn and Şahin, 2021; Hobijn and Şahin, 2022; Nie and Yang,92

2021; Faria-e-Castro, 2021b; Montes et al., 2022). These studies were very93

useful in guiding researchers and policy makers to understand underlying94

sources behind these patterns. Relative to this literature, we develop a uni-95

fied approach using a structural model that allows us to study interactions96

of these potential sources and decompose their relative contribution to ag-97

gregate labor market moments. Importantly, we also compare predictions of98

our model against relevant moments from macro and micro data.99

2. Excess retirements in the data100

In this section, we discuss empirical trends in the aggregate fraction of the101

population that is retired in the U.S. with a special focus on the 2020-23102

period, and use microdata to study retirement patterns across the wealth103

and income distributions during the same period.104

2.1. Aggregate trends105

The U.S. LFPR experienced its largest drop on record at the onset of the106

COVID-19 pandemic in early 2020, falling from 63.3% in January 2020 to107
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60.1% in April 2020. While there was a quick rebound from this 50-year108

minimum, it has not fully recovered to its pre-pandemic levels: 62.5% as109

of May 2024. Most of this gap can be attributed to a persistent drop in110

the LFPR for those aged 55 and over (38.2% in May 2024 vs. 40.2% in111

January 2020), as the LFPR or prime-age workers has actually exceeded its112

pre-pandemic level. This pattern motivates us to focus on older workers.113

Several studies have documented a large increase in the share of the pop-114

ulation that is retired over the same period (Nie and Yang, 2021; Faria-e-115

Castro, 2021b). Figure 2.1(a) plots the retired share, measured as the frac-116

tion of individuals who report to be retired among all individuals (excluding117

those in armed forces) aged 16 and over, in the U.S. from 1995 to the end118

of 2023 using data from the Current Population Survey (CPS).1 The retired119

share was roughly constant until the late 2000s, when it started growing at a120

roughly linear trend (dashed line), estimated between June 2008 and January121

2020, the last full month before the effects of the pandemic were felt in the122

economy. The rise in the retired share is plausibly related to demographic123

factors: 2008 was the first year in which Baby Boomers became eligible to124

retire and collect Social Security benefits. There is a significant gap between125

the linear trend and the actual retired share between 2020 and 2023, plotted126

in Panel (b): the retired share increased by 0.7 pp above the trend in late127

2021. This gap corresponds to close to 2 million people who were retired be-128

yond what the pre-pandemic trend implies.2 We refer to this gap as “excess129

retirements,” and analyzing its drivers is the main focus of this paper.130

2.2. Micro patterns131

A key starting point to understanding the causes of this gap is identifying132

the worker groups that experienced the highest excess retirements. In partic-133

ular, we examine how retirement varied across both the wealth and income134

distributions. Later, we use these findings to validate model predictions.135

As the CPS does not provide information on wealth holdings, we use data136

from the 2020, 2021, and 2022 panels (covering data from all months between137

2019 and 2021) of the SIPP, which provide information on employment sta-138

1Appendix A.1 has details on the construction of the data and shows that our mea-
surement is robust to alternative definitions of retirement.

2Other filters, such as the one proposed by Hamilton (2018), the HP filter, and other
deterministic trends, also generate above-trend increases of similar magnitudes in 2020.
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Figure 2.1: Excess retirements between 2020 and 2023
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Note: Panel (a) plots the retired share in the U.S. which we calculate as the fraction of individuals who
report to be retired in the CPS among all individuals aged 16 and over. The linear trend is estimated
between June 2008 and January 2020. Panel (b) plots 6-month moving averages of deviations from trend.

tus, wealth, and labor income.3 Our measure of wealth is total household139

net worth, while labor income is the total wages and salaries from all jobs.140

Using this data, we identify new retirees in 2019 as those who report being141

in the labor force in a month in 2019 and report being retired for the first time142

in the following month. We then assign each new retiree to quintiles of the143

wealth distribution of employed individuals aged between 62 and 72. This144

allows us to calculate where each new retiree in 2019 sit within the wealth145

distribution of older employed workers eligible for retirement benefits—the146

relevant demographic for our analysis. We then recompute the same moments147

between 2020 and 2021 to understand how retirement patterns by wealth148

holdings evolved during the pandemic.4149

Figure 2.2(a) plots the fractions of new retirees during each period (2019150

or 2020-21) who are in each wealth quintile. In 2019, the fraction of new151

retirees is slightly increasing in wealth quintiles, suggesting that new retirees152

3We use CPS excess retirements as our baseline estimate for two reasons. First,
monthly transition rates between employment statuses are underestimated in the SIPP
relative to the CPS (Krusell et al., 2017; Birinci and See, 2023). Second, the most recent
SIPP (2022) covers the reference period until December 2021, preventing us from studying
aggregate retirement dynamics after 2021. Despite these limitations, the rise in the retired
share in 2020-21 is also observed in the SIPP. This allows us to analyze the underlying
retirement patterns across the wealth and income distributions during this period.

4Appendix A.2 provides details on the data and construction of these moments.
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Figure 2.2: Retirement patterns in the micro data

(a) New retirees by wealth
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(b) New retirees by labor income
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Note: Panel (a) shows the fraction of new retirees across wealth quintiles, separately for those retiring in
2019 and 2020–2021, using SIPP data. Panel (b) repeats this for labor income.

are relatively wealthier, even though this relation is weak. Importantly, we153

find that this relationship remained mostly unchanged in 2020-21 relative to154

2019. In other words, we find that the increase in retirements during the155

pandemic does not seem to be driven by wealthier people.156

Figure 2.2(b) repeats the same exercise for labor income, using the distri-157

bution of labor income for those who are employed and aged between 62 and158

72. For new retirees, labor income refers to earnings prior to retirement. In159

2019, we find that new retirees typically have lower incomes. As with wealth,160

this pattern also changes little during 2020-21. Thus, most retirements in161

2020-21 were still drawn from lower quintiles of the income distribution.162

To sum, new retirees have lower income and are slightly wealthier relative163

to the employed workers at the age of retirement. This relationship did not164

change dramatically during the pandemic.165

3. Model166

We now present a decision model of retirement that captures the joint distri-167

bution of retirement, income, and wealth in 2019. We combine a partial-168

equilibrium heterogeneous-agents incomplete markets OLG model with a169

frictional labor market to quantify contributions of various factors to the170

rise in the retired share between 2020 and 2023.171
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3.1. Environment172

Time is discrete and infinite. The economy is populated by a stationary173

mass of overlapping generations of agents. Agents are indexed by four state174

variables: age j ∈ {25, . . . , 90}, wealth a ∈ [−a,∞), employment status175

ℓ ∈ {E,U,N} (employed, unemployed, out of the labor force), and wage176

w ∈ R+ if employed or last wage if not employed. Agents are born at age177

25 and face an age- and employment-status-dependent probability of death,178

1− π(j, ℓ). They die with certainty at age 90.179

Preferences are given by u(c, ℓ, j) = c1−σ

1−σ
− I[ℓ = E]ϕE(j)− I[ℓ = U ]ϕU(j),180

where σ is the elasticity of intertemporal substitution, ϕE(j) is the disutility181

of working, and ϕU(j) is the disutility of looking for a job while unemployed.182

There is a risk-free asset that pays return r(a, j) on savings (a ≥ 0) and183

rb on borrowings (a < 0). This is a single-asset model where the rate of184

return depends on the level of wealth: a tractable way of capturing portfolio185

heterogeneity across the wealth distribution.186

Labor income depends on a stochastic wage w′ that evolves according to a
persistent process F (w′|w), and an age-specific profile ψ(j). We follow French
(2005) and Blandin, Jones and Yang (2023) in modeling income dynamics.
Letting Wj = wj × ψ(j) denote the actual income of a worker aged j:

logWj = logψ(j) + logwj

logwj = ρw logwj−1 + εwj

εwj ∼ N(0, σϵ), i.i.d.

logw0 ∼ N(0, σw0), (3.1)

where logψ(j) = ψ0 + ψ1j + ψ2j
2 is a quadratic function of age.187

Employed. The problem for an employed individual is given by:

V E(j, a, w) = max
c,a′

u(c, ℓ = E, j) + βπ(j, ℓ)δ(w, j)max{V U (j + 1, a′, w), V N (j + 1, a′, w)}

+βπ(j, ℓ)[1− δ(w, j)]

∫
w′

max{V E(j + 1, a′, w′), V U (j + 1, a′, w), V N (j + 1, a′, w)}dF (w′|w)

s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a
y = w × ψ(j) + ȳss(w, j, ℓ = E) + r(a, j)× a,
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where a is the borrowing constraint and T (y, j, a) are government transfers,188

which depends on total income, wealth, and age. An employed agent has189

total income y, consisting of labor incomeWj = w×ψ(j), social security (SS)190

income ȳss(w, j, ℓ = E) (details of which is discussed in Section 4), and capital191

income. She may exogenously separate from her job with probability δ(w, j),192

which depends on the transitory component w of the income process as well193

as her age j. If a separation occurs, she can choose to become unemployed or194

leave the labor force. If no exogenous separation takes place, she can choose195

to either stay in the current job or quit to non-employment (ℓ = U or ℓ = N).196

We note that, when individuals are non-employed, we still keep track of the197

last employment wage w as it will affect the amount of UI and SS income.198

Unemployed. Instead of labor income, unemployed agents derive income
from home production and UI. We allow the home production level h(j) to
depend on age and the UI replacement rate b(w, j) ∈ [0, 1] to depend on last
labor income Wj, i.e., w and j. Thus, UI benefits for an unemployed with
last wage w and age j is b(w, j)× w × ψ(j). The problem of this agent is:

V U (j, a, w) = max
c,a′

u(c, ℓ = U, j) + βπ(j, ℓ)(1− f)max{V U (j + 1, a′, w), V N (j + 1, a′, w)}

+βπ(j, ℓ)f

∫
w′

max{V E(j + 1, a′, w′), V U (j + 1, a′, w), V N (j + 1, a′, w)}dF (w′|w)

s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a
y = b(w, j)× w × ψ(j) + h(j) + ȳss(w, j, ℓ = U) + r(a, j)× a.

An unemployed agent receives a job offer with probability f . If an offer199

is received, she draws a wage w′ from F and decides whether to become200

employed with labor income w′ × ψ(j + 1), remain unemployed, or leave the201

labor force. If no offer is received, she can still choose to leave the labor force.202

Non-participant. Agents who are out of the labor force receive income
from home production h(j), but are ineligible for UI benefits. To capture
direct transitions from non-participation to employment in the data, we as-
sume that a non-participant receives a job offer with probability γ × f , with
γ < 1. If an offer is received, they can choose to become employed, unem-
ployed, or non-participant. If no offer is received, they can still choose to
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become unemployed. The problem of a non-participant is given by:

V N (j, a, w) = max
c,a′

u(c, ℓ = N, j) + βπ(j, ℓ)(1− γf)max{V U (j + 1, a′, w), V N (j + 1, a′, w)}

+βπ(j, ℓ)γf

∫
w′

max{V E(j + 1, a′, w′), V U (j + 1, a′, w), V N (j + 1, a′, w)}dF (w′|w)

s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a.
y = h(j) + ȳss(w, j,N) + r(a, j)× a

Throughout the analysis, we classify individuals aged 62 and older who are203

out of the labor force as retired.5 Age 62 is the minimum eligibility age for204

Social Security benefits in the U.S., making it the earliest point at which205

retirement meaningfully differs from non-participation.206

Death and birth. At age j = 91, all agents die with probability 1 and207

obtain zero value, V ℓ(j = 91, a, w) = 0, ∀(a, ℓ, w). They are replaced with208

newborns, who enter the model at age j = 25, drawing their initial wealth209

from a distribution Q(a) and initial wage w0 from Equation (3.1). We assume210

that agents enter the model as unemployed individuals.211

3.2. Stationary distribution212

We focus on macroeconomic variables that result from the aggregation of the213

individual decisions. Let λt(j, a, w, ℓ) denote the distribution over individual214

states. At the stationary state, the distribution is such that it solves the215

fixed-point of the following equation: λ(j, a, w, ℓ) = T [λ(j, a, w, ℓ), where T216

is the transition function between individual states.217

4. Calibration218

Our calibration strategy sets some parameters externally while internally219

calibrating most to match key moments related to labor market and demo-220

graphic outcomes, as well as income and wealth distributions. Since we use221

5In our analysis, we have experimented with a stricter definition of retirement where
we also require that agents never come back to the labor force to be considered as retired.
Our quantitative results barely change under this alternative definition.
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our model to understand labor market dynamics between 2020–2023, we in-222

terpret the model’s stationary state to be the U.S. economy at the end of223

2019. A period is a month and the numeraire is set to be 2019 dollars.224

4.1. Functional forms and external parameters225

We assume that disutility functions for the employed and unemployed depend226

linearly with the individual’s age, ϕℓ(j) = ϕℓ
0 + ϕℓ

1 × j, ℓ = E,U . The job-227

separation rate varies with the labor income of the worker according to228

δ(w, j) = δ̄ × exp

[
ηδw × w × ψ(j)− W̄

W̄

]
. (4.1)

Shimer (2005) uses a similar functional form when defining how the aggregate229

job-separation rate changes with productivity over time. The formula for the230

replacement rate is linear in labor income, b(w, j) = b0+b1×w×ψ(j), and the231

value of home production is given by h(j) = h̄0[1+ h̄1× I[j ≥ 62]]. The fiscal232

transfer function T (y, j, a) is set to zero at the stationary state, and described233

in detail in Section 5. The distribution of wealth for the newborn Q(a) is log-234

normal with parameters (µa, σa); we choose the mean and standard deviation235

to match the wealth distribution of 25-year olds from the SCF. The resulting236

values are µa = $8, 685.32 and σa = $39, 597.24. We also set the coefficient237

of relative risk aversion σ to 2, a standard value in this class of models.238

Next, we describe in detail how we calibrate the following key inputs: (i)239

the stochastic process and life-cycle profile for labor income Wj; (ii) the asset240

return function r(a, j); (iii) the survival probabilities π(j, ℓ); (iv) the home241

production function h(j); and (v) the SS income function ȳss(w, j, ℓ).242

Labor income process. Using monthly data on labor earnings from the243

SIPP, we estimate the parameters of the life-cycle labor income process by244

closely following French (2005) and Blandin et al. (2023). Appendix B.1 pro-245

vides details on the estimation. The estimated persistence for the transitory246

wage component is ρw = 0.961, with a standard deviation of σϵ = 0.027. The247

estimated dispersion for the distribution of initial wage draws is σw0 = 0.596.248

For the life-cycle profile, we estimate ψ0 = 6.979, ψ1 = 0.054, ψ2 = −0.001.249

With the estimated parameters, we simulate the labor income process tak-250

ing into account life-cycle dynamics and unemployment risk, and obtain an251

estimate for W̄ , the average real labor income in the economy that is used252
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as a parameter for δ(w, j).6 This procedure yields W̄ = $3, 395.253

Asset returns. We parametrize the return function r(a, j) using estimated254

returns on net worth. To this end, we follow the imputation process that com-255

bines the 2019 SCF with data on aggregate returns for different asset classes.256

This imputation process assumes that the composition of asset portfolios in257

the 2019 SCF remains constant, and that households are perfectly diversified258

within each asset class. We compute returns only for changes in net worth259

that arise from asset classes for which we observe data on realized returns.7260

For calibration purposes, we consider the monthly return on net worth261

for each month in 2019. We focus on households with a ratio of net worth262

to annual income between 0 and 15 in 2019. This excludes households with263

negative net worth, as our model differentiates between borrowing and saving264

rates. It also excludes the very wealthy, as the model is not designed to265

capture extremely high wealth levels. For this sample, we estimate:266

rNW
i,τ = β0 + β1agei + β2age

2
i + β3age

3
i + β4

(
NWi

12× W̄25y

)
+ εi, (4.2)

where rNW
i,τ is the return on net worth during each month τ of 2019, agei is267

the age of the individual in years, and
(

NWi

12×W̄25y

)
is the ratio of net worth268

to the average annual labor income of a 25 year old. We then average all269

coefficients across months of 2019.8 We set the borrowing rate to be equal270

to maxa,j r(a, j) plus a monthly spread of 0.005: the maximum returns on271

savings to prevent arbitrage, plus an annualized borrowing spread of 6%.9272

Survival probabilities. To calibrate π(j, ℓ), we use the 2019 Actuarial273

Life Table from the Social Security Administration (SSA), which reports274

6In particular, we simulate a simplified version of our model that incorporates the
mortality parameters to capture life-cycle dynamics as well as the average job-finding and
job-separation rates from the data. We do this to avoid having to calibrate the parameter
W̄ internally, which would have required solving a fixed-point problem.

7Appendix B.2 provides details of these calculations.
8Among several other parametrizations, the specification in Equation (4.2) provided

the best combination of simplicity and explanatory power.
9This falls in between the estimates of Lee et al. (2021) using Danish data (4%) and

the implied borrowing spread used in Kaplan et al. (2018) (about 8%).
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conditional death probabilities for males and females in each age group. We275

compute an equally weighted average for men and women for each age group,276

and convert these annual conditional death probabilities into monthly prob-277

abilities. There is no dependence in employment status ℓ at the steady state.278

Home production. We assume that income from home production is279

equal to a constant h̄0 for agents under 62, at which point it becomes equal280

to 1.15 × h̄0, i.e., h̄1 = 0.15. This value is taken from Dotsey et al. (2014),281

who show that home goods consumption for older workers starts increasing282

at around age 60, and is about 25% larger at age 90. We take an average of283

15% for those older than 62. We internally calibrate h̄0 in Section 4.2.284

Social Security income. To parametrize and calibrate the SS income285

function ȳss(w, j, ℓ), we closely follow actual U.S. regulations, as in French286

(2005). This function is the product of two components. The first is the Pri-287

mary Insurance Amount (PIA), a piece-wise concave function of a measure of288

past earnings, up to a limit. In order to keep the model tractable, we proxy289

past earnings by the product of the last realization of the transitory wage290

component w before retirement and an average of the life-cycle component291

ψ(j). The cap on this measure of earnings as well as the bend points that292

generate concavity are all set to their 2019 values. The second component293

is a retirement-age-dependent modifier: individuals can begin collecting So-294

cial Security benefits at age 62 but face penalties if they retire before the295

full retirement age, which varies by birth cohort. For this paper, we set the296

full retirement age to 66. Additionally, they get a benefit if they retire past297

this age. We follow the exact 2019 SS rules in setting up this modifier. For298

tractability, we define this modifier as a function of the individual’s current299

age, as opposed to the age at retirement. We also follow current SSA regula-300

tions in calculating a penalty for those who work while collecting SS income.301

Unemployed or non-participant agents receive no penalties. A full descrip-302

tion of the SS income function, as well as the calibration of its parameters303

can be found in Appendix B.3.304

4.2. Internally calibrated parameters305

We internally calibrate the remaining 13 parameters. The full set of param-306

eters and respective targeted data moments are summarized in Table 4.1.307
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Table 4.1: Internally calibrated parameters

Parameter Value Moment Source Data Model

β 0.996 Fraction of population w/ NW ≤ 0 under 62 SCF 0.116 0.118
a -7894.46 Median credit limit/quarterly labor income SCF 0.740 0.722
h̄0 1000.01 Retired share CPS 0.213 0.255
b0 0.774 Average UI replacement rate SIPP 0.400 0.345
b1 −1.25× 10−4 Q1/Q5 ratio of UI replacement rate SIPP 2.015 1.801
ϕE
0 7.95× 10−5 Unemployment rate, all ages CPS 0.030 0.052
ϕE
1 7.10× 10−8 Unemployment rate, over 55 CPS 0.027 0.024
ϕU
0 1.26× 10−4 LFPR, all ages CPS 0.646 0.743
ϕU
1 5.03× 10−7 LFPR, over 55 CPS 0.389 0.416
γ 0.20 Ratio of NE and RE flows to total job-finding rate CPS 0.202 0.251
f 0.361 Total job-finding rate CPS 0.439 0.478
δ̄ 0.017 Total job-separation rate CPS 0.034 0.039
ηδw −0.156 Q1/Q5 ratio of E to U or N or R rate CPS 2.889 3.365

Note: This table provides a list of internally calibrated parameters. SCF refers to the 2019 Survey of
Consumer Finances. CPS refers to averages over the 12 months of 2019 for the Current Population Survey.
All moments computed for a population over the age of 25, excluding armed forces, unless otherwise noted.

The discount factor β is chosen to match the fraction of individuals with308

non-positive net worth in the SCF under the age of 62. The borrowing limit309

is chosen to target the median value of the credit-limit-to-quarterly-labor-310

income ratio, as in Kaplan and Violante (2014) using the SCF. The level of311

home production income h̄0 is chosen to match the retired share.10 Finally,312

the slope of the UI replacement rate b1 is set to match the Q1/Q5 ratio of313

replacement rates when individuals are ranked based on their labor income314

prior to unemployment, as in Birinci and See (2023), while the level b0 is set315

to match the average replacement rate.316

The level and slope of the employment disutility function are chosen to317

match the overall unemployment rate as well as the unemployment rate for318

those aged 55 and over, respectively. The level and slope of the unemploy-319

ment disutility function are chosen in a similar way, but to match the LFPR320

of the population and those aged 55 and over.11 The parameter γ that affects321

non-participants’ job-finding probability is chosen to match the ratio of flows322

from non-participation to employment relative to the total job-finding rate323

10The retired share in Table 4.1 is for the population over the age of 25, which is
different than the overall retired share that is shown in Figure 2.1. Our results in Section
2 remain unchanged if our earlier analysis was conducted for those over the age of 25.

11Since j refers to monthly age and consumption is in units of 2019 dollars, the estimated
slope parameters of disutility functions are small.
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(out of non-employment). The probability of finding a job for the unemployed324

f is set to target the total job-finding rate, which is defined as the sum of the325

average flow rates from unemployment, non-participation, and retirement to326

employment. The level parameter of the job-separation rate δ̄ is chosen to327

match flows out of employment in an analogous manner. Finally, the slope328

parameter of the job-separation rate ηδw is chosen to target the Q1/Q5 ratio329

of the job-separation rate in the data when employed individuals are ranked330

based on their labor income, as in Birinci and See (2023).331

4.3. Model validation at the stationary state332

The last two columns of Table 4.1 show that the model matches targeted333

data moments reasonably well. We now show that the model also captures334

untargeted data moments in 2019 that are relevant for the economic forces335

that we seek to analyze: the shape of the wealth distribution, and the wealth336

and income distributions of new retirees in the data reported in Section 2.337

Unconditional wealth distribution. Figure 4.1(a) plots deciles of the338

economy-wide wealth distribution in the model’s stationary state vs. the339

SCF and SIPP. To ensure comparability between the model and the data,340

we report wealth deciles relative to median wealth. We find that the model341

does a good job of matching the shape of the wealth distribution, especially342

relative to the SCF. The SIPP distribution is more unequal because the343

SIPP oversamples income-poor households who are likely to receive transfers.344

Thus, the gap between the median and the top deciles is larger in the SIPP.345

New retirees by wealth and labor income. Since our analysis is fo-346

cused on the drivers of retirement patterns between 2020 and 2023, it is347

important that the model’s stationary state generates the right patterns of348

retirement in 2019 in the data. Panels (b) and (c) of Figure 4.1 plot fractions349

of new retirees across quintiles of the wealth and income distributions in the350

model’s stationary state vs. the 2019 SIPP data. We described how we com-351

puted these moments in the context of Figure 2.2 in the data, and implement352

the same calculations in the model. We find that the model broadly matches353

the patterns in the data. Specifically, the model matches the negative de-354

pendence of retirement decisions on income, as well as the slight positive355

relationship with wealth. These results indicate that the model is able to356
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Figure 4.1: Validation of model predictions using microdata at the stationary state

(a) Wealth distribution
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(b) New retirees by wealth
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(c) New retirees by labor income
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Note: Panel (a) presents deciles relative to median of the wealth distribution in the model’s stationary
state vs. 2019 SCF and 2019 SIPP. Panel (b) plots fractions of new retirees across wealth quintiles for
individuals aged between 62 and 72 and were previously employed in the model’s stationary state and in
SIPP 2019. Panel (c) repeats the same calculations as in Panel (b) for labor income.

capture both the small wealth effects of labor supply, with those who retire357

being only slightly more likely to be wealthy, and the opportunity cost ef-358

fects, with those who retire being more likely to have lower labor income.359

While the model correctly predicts that around half of new retirees (51% in360

the model vs 52% in the data) have levels of income before retirement at the361

bottom two quintiles of the income distribution, the model also generates362

a larger fraction of new retirees at the top quintile (25% in the model vs363

12% in the data). This gap is driven by our simplifying assumption on the364

SS income function, which is based on the last realization of the transitory365

wage component w before retirement. This simplification gives agents the366

incentive to wait until they obtain a high enough w before deciding to retire.367

5. Aggregate dynamics during 2020-2023368

Using the calibrated model, we now ask whether the model can generate the369

observed changes in aggregate labor market moments between 2020 and 2023.370

First, we describe how we measure and map the shocks to the model. Second,371

we present the results of our main experiment, where we feed in all these372

shocks and analyze whether the model generates the empirical changes in373

the retired share, unemployment rate, and employment-to-population ratio.374

As these movements are not targeted by our calibration, the model’s fit in375

terms of these variables serves as yet another element of validation.376
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Figure 5.1: Time series paths for exogenous shocks

(a) Asset returns shock
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(b) Job-separation rate shock
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(c) Fiscal payments shock

2020-01
2020-07

2021-01
2021-07

2022-01
2022-07

2023-01
2023-07

2024-01

0

500

1000

1500

2000

Le
ve

l o
f 

T

Age 35
Age 45
Age 55
Age 65
Age 75+

(d) UI benefits shock
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(e) Mortality rate shock
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Note: Panel (a) plots the mean and median paths of the estimated monthly return (annualized) function
rt(a, j). We only plot the mean and median values at each month for expositional purposes. Panel (b)
plots percent changes in the job-separation rate at each month δt(w, j) relative to the stationary state by
quintiles of the labor income distribution. Panel (c) presents shocks to the economic impact payments
Tt(y, j, a) for eligible individuals. Panel (d) plots the shocks to UI benefit amount bt. Panel (e) plots
percent changes in mortality rates πt(j, l) at each month relative to the stationary state by age and
employment status. Shocks in Panels (a) and (b) are smoothed by taking six-month moving averages.

5.1. Shocks377

Starting from the stationary state, we introduce five shock sequences into the378

model: (i) a shock to the return on savings, which varies by wealth and age;379

(ii) a shock to job-separation rates for the employed, which varies by labor380

income; (iii) a shock to lump-sum transfers, which depends on age and total381

income; (iv) a shock to UI benefits for the unemployed; and (v) a shock to382

mortality rates, which varies by age and employment status. The time series383

of these shocks are presented in Figure 5.1. Below, we describe in detail how384

we map each of these impulses from the data to the model.385

Asset returns. Elevated asset returns during 2020-2023 may have trig-386

gered wealth effects that led to above-average movements into retirements387

and also retained individuals already in retirement. One feature of the data388

that we do not explicitly model is that agents at different levels of wealth389
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and age have different portfolios that may have earned different amounts390

of returns during this period. To capture this heterogeneity with our envi-391

ronment, we estimate Equation (4.2) for each month from January 2020 to392

December 2023. Due to significant month-to-month variation in returns, we393

take six-month moving averages of the estimated coefficients and feed to the394

model as exogenous shocks. Figure 5.1(a) plots the mean and median paths395

of the estimated monthly return (annualized) function: both the mean and396

median increase in the early months of the pandemic, surpassing 20% and397

15% in 2021, respectively. They then fall and become negative in 2022 and398

early 2023, but recover to positive levels later in 2023.12399

For implementation, we replace the return function r(a, j) in the budget400

constraint for each agent with positive wealth with rt(a, j). These return401

shocks are unexpected and assumed to be transitory. That is, individuals402

expect the return on savings to be the stationary function in all following403

periods. This is therefore equivalent to a lump-sum windfall that does not404

distort individual savings decisions.13 This reflects the unexpected nature of405

these large movements, and prevents counterfactual changes in consumption406

and savings behavior that could affect labor supply by inducing agents to407

work more and accumulate wealth to take advantage of elevated returns.408

Job-separation rates. The 2020-23 period was marked by a large increase409

in the aggregate job-separation rate. In addition, the COVID-19 episode410

induced a much larger increase in job-separation rates of low-income work-411

ers, while those who were employed at jobs paying relatively higher-paying412

jobs experienced smaller increases in their job-separation rates. The rise in413

job separations may have negatively impacted labor force participation as414

unemployed workers are more likely to flow into non-participation than are415

employed workers (Hobijn and Şahin, 2021). We capture both the magnitude416

and heterogeneity in separations by feeding exogenous paths of job-separation417

rates that vary by quintiles of labor income. To this end, using the CPS, we418

first calculate the monthly job-separation rate as the fraction of employed in-419

dividuals in one month who become non-employed in the next. We compute420

12Appendix C.1 presents heterogeneity in these estimated asset returns by age, showing
that younger individuals experienced wider return fluctuations during 2020-2023.

13The amount of lump-sum income (or loss) is equal to at × rt(at,jt)−r(a,j)
1+r(a,j) . As such,

this experiment preserves distortion of decisions through wealth effects (as it is intended).
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this rate separately for each month from 2019 to 2023 and by quintiles of the421

income distribution, where individuals are assigned to quintiles based on their422

current labor income.14 We then calculate percent changes in job-separation423

rates for each month in 2020-23 relative to the average job-separation rate424

in 2019, separately for each quintile. Due to sizable fluctuations in monthly425

rates, we compute six-month moving averages of these changes. Panel (b)426

of Figure 5.1 plots the series that we feed to the model as period-by-period427

shocks to the job-separation rate at the stationary state δ(w, j).15 These428

series reflect both the sharp rise in separation rates and the substantial het-429

erogeneity across labor income quintiles, with lower-quintile workers being430

more affected and experiencing a slower recovery to 2019 levels.16431

Economic impact payments. The COVID-19 episode in the U.S. trig-432

gered an unprecedented fiscal response that involved large scale support for433

households with relatively lower levels of income (Faria-e-Castro, 2021a). A434

large part of fiscal support programs to households was economic impact435

payments, which consisted of three rounds of lump-sum transfers to eligible436

households. We model these payments as increases in government transfers437

T (y, j, a) in our model. We map the dollar value and timing of the transfers438

directly to the model. For each of the three rounds of transfers, households439

were ineligible if their adjusted gross income (AGI) exceeded $80,000. 2019440

IRS data on the distribution of AGI for filed returns establishes that this441

value is close to the 80th percentile of the AGI distribution. Thus, we set the442

eligibility cutoff for transfers as the 80th percentile of the stationary state443

AGI distribution. We define AGI in the model as total income y.444

The first round of transfers was associated with the Coronavirus Aid,445

Relief, and Economic Security (CARES) Act and took place in March 2020,446

consisting of $1,200 per person plus $500 per child under the age of 17. The447

second round of transfers was triggered by the Tax Relief Act of 2020 and took448

14At the onset of the pandemic, the fraction of employed who were temporarily sep-
arated from their job increased substantially. However, most of these workers were later
recalled to their jobs. For this reason, when calculating the monthly job-separation rates
in the data, we do not include temporary job separations.

15For example, the job-separation rate of those at the bottom two quintiles increased
in mid 2020 by around 60% relative to their respective stationary state levels, while the
separation rate of those at the top quintile increased at that time by around 30%.

16Appendix C.2 shows that these shocks in the pre-2020 period were typically stable.

19



place in December 2020, consisting of $600 per person plus $600 per child449

under the age of 17. The American Rescue Plan Act of 2021 initiated a third450

round of transfers in March 2021, which consisted of $1,400 per person plus451

$1,400 per dependent. Thus, the presence of dependents could considerably452

increase the effective transfers earned by households.453

To map the size of the effective transfers to the model, we explicitly454

account for the fact that household structure and the number of dependents455

may depend on the age of the household head. We use data from the 2019456

Annual Social and Economic Supplement (ASEC) of the CPS, which provides457

the number of individuals under 18 by the head of household’s age. This458

allows us to impute a transfer modifier that depends on the age of the head.459

The procedure is explained in detail in Appendix C.3. The effective transfer460

amounts over time, as a function of age, is plotted in Panel (c).461

UI benefits. The other major component of household income support462

during the COVID-19 episode was the expansion of UI benefits. These extra463

benefits were $600 weekly (on top of pre-pandemic benefits) between March464

2020 and June 2020, and then $300 weekly from July 2020 to about June465

2021.17 We map these extra benefits to the model by assuming four weeks per466

month. The path of UI benefits that we input in the model is plotted in Panel467

(d). Just as in the data, these benefits are modeled as a lump-sum transfer468

for the unemployed. That is, unemployed individuals receive their regular469

UI benefits, calculated with regular replacement rates, and these additional470

UI benefits in months when they are provided by the government.471

Mortality rates. The last shock we consider is a change in mortality rates472

π(j, ℓ). The goal is not to exactly match actual mortality patterns, but rather473

to shock agents’ perceived mortality risk during 2020. This is potentially an474

important channel given that perceived and realized increases in mortality475

operate as changes in the discount factor that may affect participation deci-476

sions especially for older agents. Additionally, different from the stationary477

state of the model, we now allow mortality rates to depend on labor force478

status, reflecting the potential increase in COVID-19 transmission rates from479

employment activities that involve physical contact.480

17In practice, different states phased out benefits at different points around that time,
and we choose to end them in June 2021 for simplicity.
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To model the rise in mortality rates, we assume that at the beginning of481

2020, agents perceive their mortality rate to have risen to the levels empiri-482

cally observed in the SSA life tables. At the beginning of 2021, those rates483

change again, and they return to their baseline levels in 2022. We assume484

an additional increase in mortality for employed agents. To calibrate this485

increase, we combine estimates from Eichenbaum et al. (2021) with 2020486

Census data: the probability of death for an employed worker over the age487

of 50 increased by 2.2% more relative to a non-employed, while the proba-488

bility of death for an employed below 50 increased by 0.08% more relative489

to a non-employed. We describe how we obtain these numbers in Appendix490

C.4. The percent changes in mortality rates in each month relative to the491

stationary state by age and employment status are plotted in Panel (e).492

5.2. Aggregate labor market moments: model vs data493

Next, we present the results of our experiment, in which we introduce all494

shocks simultaneously starting from the model’s stationary state and com-495

pare the resulting aggregate labor market dynamics along the transition to496

their empirical counterparts from 2020 to 2023. Figure 5.2 plots the data and497

the model paths for the aggregate retired share (Panel (a)), unemployment498

rate (Panel (b)), and employment-to-population ratio (Panel (c)).18499

For the retired share in the data, we use the same definition as in Figure500

2.1: the deviation of the actual fraction of retirees in the population in the501

CPS relative to the trend. We take six-month moving averages both in the502

data and in the model, and plot the percentage-point (pp) deviation from503

the 2019 average in the data and stationary state of the model. The model504

matches both the magnitude and persistence of the increase in the retired505

share; it predicts a slightly smaller increase, peaking at 0.56 pp, while the506

data peak at 0.70 pp. Importantly, the model also matches the dynamics507

after this peak in the data very well.19508

Similarly, for both the unemployment rate and the employment-to-population509

18In this exercise, agents who die are replaced by new 25-year olds and thus the total
population is kept constant. We have experimented with alternative assumptions (i.e., not
replacing agents who die) and found that this matters very little quantitatively.

19Figure Appendix A.2 considers an alternative definition of retirement in the data
that consists of non-participants aged 62 and older. The model’s prediction for the retired
share along the transition comes even closer to that of this alternative definition.
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Figure 5.2: Changes in aggregate labor market moments: Model vs data

(a) Retired share
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(b) Unemployment rate
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(c) Employment/population
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Note: This figure plots the paths of the aggregate retired share (i.e., the fraction of retirees in the
population) (Panel (a)), unemployment rate (Panel (b)), and employment-to-population ratio (Panel (c))
in the data and the model. We take six-month moving averages both in the data and in the model, and
plot the percentage point deviation from the 2019 average in the data and stationary state of the model.
Since the model is not designed to capture the sizable rise in temporary layoffs during COVID-19, our
data benchmark for the unemployment rate is net of temporary unemployment, as classified in the CPS.

ratio, we take six-month moving averages and plot the pp deviations from510

both the data average in 2019 or the model’s stationary state. Starting with511

the unemployment rate, we note that since our model is not designed to cap-512

ture the sizable increase in temporary layoffs during the COVID-19 episode,513

our data benchmark is the unemployment rate net of temporary unemploy-514

ment, as classified in the CPS. With this caveat, the model captures well515

both the magnitude and dynamics of the increase in the unemployment rate,516

though it slightly underestimates its persistence. Finally, the model underes-517

timates the decline in the employment-to-population ratio by about 2 pp, but518

matches its slow recovery path in the data.20 In particular, both model and519

data are aligned with their prediction that the employment-to-population520

ratio is around 0.5 pp lower at the end of 2023 relative to the 2019 level.521

Taken together, these results suggest that the model does a satisfactory job522

in capturing untargeted aggregate dynamics between 2020 and 2023.523

20We explored the reasons behind this discrepancy between the model and the data.
Because the model classifies agents aged 62 and older who are non-participants as retired,
it fails to capture the decline in the LFPR of younger individuals observed in the data.
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6. Decomposing the retirement boom524

Having shown that the model captures well the size and persistence of move-525

ments in key aggregate labor market moments, we now undertake a decom-526

position exercise where we quantify the importance of each of the five shocks527

in driving these movements during this episode.528

6.1. Decomposing the increase in retired share529

Panels (a) and (b) of Figure 6.1 offer two alternative decompositions that530

shed light in the importance of each exogenous force at each point in time531

on the increase in the retired share. Panel (a) plots the baseline (with all532

shocks included) and removes one shock at a time. Panel (b) adds only one533

shock at a time, starting from the stationary state (without any shock).534

The results show that job-separation shocks, as shown by green lines, are535

the most important driver of the rise in the retired share in 2020. However,536

these shocks alone cannot explain the persistence of the rise. As labor market537

conditions improve throughout 2021 and 2022, the retired share would have538

fallen more quickly, as shown the green line in Panel (b). Panel (b) also shows539

that the persistence of the rise is explained primarily by economic impact540

payments (purple line) and, to a lesser extent, by asset returns (orange dotted541

line). Importantly, economic impact payments or asset returns, in isolation,542

would have predicted a much smaller increase during 2020-2021 and a more543

persistent increase during 2023 than those observed in the data.544

The mortality shock, represented by the light-gold line, counters the ef-545

fects of these shocks in the aggregate and helps the model get the magnitudes546

right. The negative effect of the mortality shock on the retired share is me-547

chanical: mortality risk rises by more for older people, who therefore die548

in greater numbers than younger people. Since a significant share of these549

agents are retired, this channel pushes the retired share down. Note that,550

as previously explained, we do explicitly account for greater risk of mortal-551

ity from employment, which counteracts this mechanical effect of mortality552

shocks on retirement by inducing older people to retire. We find, however,553

that the inequality in mortality rates across ages is the dominating channel.554

Ultimately, the model requires all four shocks to adequately capture the555

retirement dynamics. Meanwhile, UI changes create an income effect on556

labor supply that lead unemployed workers to retire, but this effect is small557

as transitions between unemployment and retirement are infrequent.558
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Figure 6.1: Decomposing movements in the retired share and unemployment rate

(a) Retired share: removing one shock

2020-01
2020-07

2021-01
2021-07

2022-01
2022-07

2023-01
2023-07

2024-01

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ch
an

ge
 f

ro
m

 b
as

el
in

e 
(p

.p
.)

All shocks
No r(j, a)
No (w, j)
No b
No T(y, j, a)
No ( , j)

(b) Retired share: adding one shock
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(c) Unemployment rate: removing one shock
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(d) Unemployment rate: adding one shock
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Note: Panels (a) and (c) plot the baseline (with all shocks included) and remove one shock at a time.
Panels (b) and (d) add only one shock at a time, starting from the stationary state (without any shocks).
r(j, a), δ(w, j), b, T (y, j, a), and π(ℓ, j) refer to shocks to returns, separations, UI, transfers, and mortality.

Panel A of Table 6.1 offers a formal decomposition to quantify the contri-559

bution of all five shocks on the rise in the retired share for each year between560

2020 and 2023, where we compute the average individual percent contribu-561

tion of each shock for these years (that is, we compare the lines in Panel (b)562

to the blue line in Panel (a)). The table quantifies the previous discussions:563

91% of the excess rise in the retired share in 2020 is accounted for by changes564

in job-separation rates. This share drops to 53% in 2022. Economic impact565

payments explain 71% in 2021, and the totality of the share in 2022 and566

2023. Changes in asset returns explain 32% in 2022 and 28% in 2023. Note567

that the contribution of economic impact payments exceeds 100% in 2023,568

which again confirms that this force in isolation is unable to correctly account569

for the dynamics of excess retirements, and the offsetting effects of mortality570

shocks are important to adequately match the retirement dynamics along the571
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Table 6.1: Decomposition of changes in the retired share and unemployment rate

Asset returns Job separations UI benefits Transfers Mortality

A. Retired share

2020 1.9% 90.7% 11.6% 57.2% -57.6%
2021 14.9% 71.7% 7.3% 71.0% -55.1%
2022 32.4% 52.8% 4.6% 99.6% -84.8%
2023 28.3% 67.5% 6.4% 135.9% -144.5%

B. Unemployment rate

2020 -0.18% 97.98% -3.13% -1.92% 6.58%
2021 -0.75% 95.52% -0.85% -0.88% 8.60%
2022 0.38% 88.05% -2.14% 2.20% 12.28%
2023 0.96% 88.05% -3.44% -0.67% 12.82%

Note: This table presents the average percentage change in the retired share (Panel A) and unemployment
rate (Panel B) that is explained by feeding one shock (presented in columns) at a time, separately for each
year. Due to interactions and averaging, values may not sum up to 100%.

transition.21 In sum, job separations were a major factor in the early stages572

of the pandemic, while transfers and asset returns grew more significant in573

explaining the persistence of excess retirement later on.574

The importance of job separations and fiscal transfers in explaining excess575

retirements suggests that the rise in retirements may have been driven by576

income-poor workers, who faced relatively worse labor market prospects and577

were eligible and more sensitive to income effects from transfers. The positive578

effects of asset returns also warrant an investigation on the role of wealth.579

We study the composition of new retirees in more detail in Section 6.3.580

6.2. Decomposing the increase in unemployment rate581

Panels (c) and (d) of Figure 6.1 and Panel B of Table 6.1 repeat the same ex-582

ercise for the unemployment rate. There are three key takeaways. First, the583

unemployment rate dynamics are almost completely explained by separation584

shocks. Second, mortality shocks play somewhat of a role in explaining the585

rise in unemployment, again due to larger mortality risk among older agents,586

21A part of the increase in returns is driven by house price appreciation. One potential
concern is that housing is a less liquid asset and thus capital gains should generate weaker
wealth effects on labor supply. We analyze this point in Appendix C.5.
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who tend to be employed or retired. Third, asset returns, UI benefits and587

transfers play a negligible role in driving the unemployment rate.588

6.3. Model validation along the transition589

We have shown that the model broadly matches the behavior of aggregate590

variables of interest along the transition. Does it also align well with mi-591

crodata that are relevant for the mechanisms of interest? Comparing the592

outcomes from the model along the transition against the microdata also593

reinforces the credibility of our quantitative decomposition on the sources594

of changes in aggregate variables. In this section, we show that the model595

delivers three key predictions that are broadly in line with the microdata.596

In particular, the model matches changes in the wealth distribution and597

the distributions of new retirees by both wealth and income quintiles during598

2020-2021 relative to 2019. Moreover, Appendix C.6 provides two additional599

results by comparing changes in monthly flow rates into and out of retire-600

ment as well as average wealth over the transition. We show that the model’s601

outcomes on these moments closely align with the empirical observations.602

Changes in the distribution of net worth. The model captures the603

key movements in the wealth distribution. Table 6.2 presents the evolution604

of percentiles of the distribution relative to median in 2020-21 from the SIPP605

data (Panel A) and the model (Panel B). In the data, percentiles below the606

median increase relative to the median over time while percentiles above the607

median fall, suggesting a compression of the wealth distribution over time.608

The model captures the exact same pattern, with the bottom percentiles609

rising relative to the median and the top percentiles falling. Specifically, the610

magnitudes of the decline between 2021 and 2019 in percentiles above the611

median are almost identical in the model and the data, but the model slightly612

overestimates the magnitudes of the rise in percentiles below the median.613

Overall, the model reproduces the overall dynamics of the wealth distri-614

bution between 2019 and 2021, which involved an increase in the average net615

worth (shown in Appendix C.6) and a reduction of inequality in net worth.616

The fact that the model matches these empirical patterns is important if we617

ever expect strong wealth effects on labor supply during this episode. By618

showing that the model matches the empirical changes in wealth dynamics,619

we are giving this mechanism a fair chance in explaining aggregate partici-620

pation dynamics during this period.621
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Table 6.2: Changes in the wealth distribution: Data vs model

Relative to median p10 p20 p30 p40 p50 p60 p70 p80 p90

A. Data

2019 -0.02 0.04 0.21 0.54 1.00 1.69 2.77 4.72 9.11
2020 0.00 0.05 0.23 0.54 1.00 1.60 2.57 4.30 8.34
2021 0.00 0.06 0.25 0.56 1.00 1.59 2.45 4.13 7.96

B. Model

2019 -0.34 -0.02 0.24 0.59 1.00 1.48 2.04 2.68 3.41
2020 -0.16 0.12 0.37 0.66 1.00 1.40 1.87 2.41 2.99
2021 -0.04 0.19 0.45 0.72 1.00 1.34 1.72 2.14 2.48

Note: This table presents deciles of the wealth distribution relative to median in the SIPP data (Panel
A) and the model (Panel B), separately for 2019, 2020, and 2021.

Changes in new retirees by wealth and labor income. Panels (a)-622

(b) and (c)-(d) of Figure 6.2 compare changes in fractions of new retirees623

in the data and model across the wealth and labor income distributions,624

respectively. Calculations of these moments follow the same steps as before.625

As discussed in Section 2, Panel (a) reveals that the post-COVID-19 episode626

is not characterized by a rise in the fraction of new retirees with high levels of627

wealth. If anything, retirements during 2020-2021 were slightly tilted toward628

people with low levels of wealth, and there is slightly less heterogeneity in629

fractions of new retirees across wealth quintiles in the 2020-2021 episode630

when compared with the same distribution in 2019. Panel (b) shows that631

the model reproduces the same patterns: retirements during 2020-2021 were632

not tilted toward wealthy individuals and changes in fractions of new retirees633

by wealth quintiles in 2020-2021 relative to 2019 were quite limited.634

Panels (c) and (d) show that, in the data and the model, fractions of new635

retirees by labor income quintiles change little over time, with the majority of636

new retirees continuing to come from the lower quintiles. This makes sense in637

light of our decomposition, which reveals that most new retirements were due638

to a deterioration of labor market conditions with increased job separations639

especially for low-income workers and economic impact payments to which640

low-income individuals are more sensitive.641

In summary, we show that the model not only matches the rise in the642

retired share during this episode but also generates fractions of new retirees643

by wealth and income groups as well as monthly flow rates into and out of644
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Figure 6.2: Validation of model predictions using microdata along the transition

(a) New retirees by wealth: Data
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(b) New retirees by wealth: Model
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(c) New retirees by income: Data
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(d) New retirees by income: Model
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Note: Panels (a) and (b) plot fractions of new retirees by wealth quintiles, separately for those who retire
in 2019 and those who retire between 2020 and 2021 using data from the SIPP and from the model,
respectively. Panels (c) and (d) repeat the same calculations for labor income.

retirement (shown in Appendix C.6) that are in line with the microdata.645

7. Conclusion646

In this paper, we develop an incomplete markets, OLG model combined with647

a frictional labor market to understand the rise in retirements experienced648

in the U.S. after 2019. We analyze the ability of five different channels to ex-649

plain excess retirements during 2020-2023: elevated asset returns, increased650

job separations, provision of economic impact payments, expansion of UI651

benefits, and increased mortality risk. In a quantitative exercise that maps652

these shocks to the calibrated model, we show that the model is able to match653

the magnitude and persistence of excess retirements when all these forces are654
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active. In a decomposition exercise, we show that increased job separations655

explained the majority of the increase in retirements in 2020-2021. The per-656

sistence of the rise in retirements was accounted for by economic impact657

payments and, to a lesser extent, elevated returns on assets, in spite of im-658

proving labor market conditions post-2021. On the other hand, increased659

mortality risk during COVID-19 mitigated the effects of the other forces.660

The fact that increased job loss risk and economic impact payments con-661

ditional on income explain the bulk of excess retirements suggests that these662

were concentrated in lower-income individuals. We show that this prediction663

of the model is corroborated in the microdata: fractions of new retirees by664

wealth and income groups changed little during this period, and most new665

retirees came from lower income quintiles.666
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Supplementary Material for715

“Dissecting the Great Retirement716

Boom”717

Appendix A. Data718

In this Appendix, we provide details on our empirical analysis to supplement719

the discussions in the main text and provide additional results from the data.720

Appendix A.1. CPS721

Our CPS sample consists of individuals aged 16 and over who are not in the722

armed forces. In our baseline analysis, we define retirees based on whether723

they identify themselves as retired, EMPSTAT equal to 36. We define the724

retired share as the weighted sum of all retirees divided by the weighted725

sum of all persons in our sample. We seasonally adjust the retired share by726

regressing it on month dummies.727

We have also experimented with alternative definitions of retirement. Fig-728

ures Appendix A.1 and Appendix A.2 replicate Figure 2.1 for two such729

alternative definitions. Figure Appendix A.1 considers a stricter definition730

where a person is considered retired if EMPSTAT is equal to 36 and age is at731

least 62. This is a strict subset of our baseline definition as it only considers732

people who identify themselves as retired and are old enough to be eligi-733

ble for Social Security benefits. Figure Appendix A.2, on the other hand,734

considers a slightly broader definition of retirement: EMPSTAT is equal to or735

greater than 30 and age is at least 62. This means that we define retirees736

as non-participants who are at least 62 years old. Figures Appendix A.1737

and Appendix A.2 show that our measure of the retired share (i.e., excess738

retirement share) is robust to alternative definitions of retirement.739
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Figure Appendix A.1: Alternative retirement definition: Retirees over 62

(a) Retired share and linear trend
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Note: Panel (a) plots the retired share in the U.S., calculated as the fraction of individuals who report
to be retired in the Current Population Survey (CPS) and are at least 62 years old among all individuals
(excluding those in armed forces) aged 16 and over. Linear trend is estimated between June 2008 and
January 2020. Panel (b) plots deviations from trend by taking 6-month moving averages.

Appendix A.2. SIPP740

We use the SIPP data for three purposes. First, we calculate the wealth741

distribution for each year between 2019 and 2021. These results are presented742

in Panel (a) of Figure 4.1 and in Table 6.2. Second, we calculate fractions of743

new retirees by wealth and labor income quintiles, separately for those who744

retire in 2019 and those who retire between 2020 and 2021. These results are745

presented in Figure 2.2. Finally, we estimate the parameters of the lifecycle746

labor income process using the SIPP data, as discussed in Section 4.1. In747

this Appendix, we provide details on calculations of the first two moments.748

Appendix B.1 provides details on the last one.749

For these calculations, we use SIPP 2020, 2021, and 2022 panels covering750

data from the start of 2019 to the end of 2021.22 Our sample consists of all751

individuals (excluding those in armed forces) aged 25 and over.752

Wealth distribution. The SIPP provides values of assets across detailed753

asset categories at individual and household levels for each year. We obtain754

the value of total net worth for each household as follows.755

We first calculate the gross liquid wealth for each household. This is756

22Later panels of SIPP are not yet available as of this writing.
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Figure Appendix A.2: Alternative retirement definition: Non-participants over 62

(a) Retired share and linear trend
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Note: Panel (a) plots the retired share in the U.S., calculated as the fraction of individuals who report to
be out of the labor force in the Current Population Survey (CPS) and are at least 62 years old among all
individuals (excluding those in armed forces) aged 16 and over. Linear trend is estimated between June
2008 and January 2020. Panel (b) plots deviations from trend by taking 6-month moving averages.

given by the household-level sum of (i) value of assets held at financial in-757

stitutions THVAL BANK, (ii) value of other interest-earning assets THVAL BOND,758

(iii) value of stocks and mutual funds THVAL STMF, and (iv) value of other759

assets THVAL OTH. Next, we obtain the net liquid wealth as the gross liquid760

wealth minus the household-level sum of value of amount owed on all unse-761

cured debt THDEBT USEC. Our measure of household-level net worth is then762

given by the net liquid wealth plus the sum of household-level (i) value of763

retirement accounts THVAL RET, (ii) equity in primary residence THEQ HOME,764

(iii) equity in rental properties THEQ RENT, (iv) equity in other real estate765

THEQ RE, and (v) equity in vehicles THEQ VEH.766

We calculate household-level net worth for all households, separately us-767

ing the SIPP 2019, 2020, and 2021 data. Then, for each year, we calculate the768

average and various percentiles of the net worth distribution using weights.769

Fraction of new retirees by wealth quintiles. The SIPP also provides770

individual-level information on weekly employment status. For each of the771

five possible weeks in a month, this information is recorded in RWKESR1 to772

RWKESR5. We use this information to classify individuals into one of the three773

employment statuses each month as follows. If an individual reports having774

no job or business and that she is not looking for work and not on layoff775

in at least one week of a given month, we classify her as non-participant776
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(i.e., out of labor force) in that month. That is, RWKESRj = 5 for at least one777

j ∈ {1, 2, 3, 4, 5}. If she reports having a job or business and either working or778

absent without pay (but not on layoff) in all weeks of that month, we classify779

her as employed in that month. That is, RWKESRj ≤ 2∀j ∈ {1, 2, 3, 4, 5}. For780

all other cases with any other potential combination of employment statuses781

across weeks, we classify individuals as unemployed (i.e., those who report782

to have a job or business but on layoff or those who do not have a job or783

business and are looking for work).784

Given this information on monthly employment status, we identify new785

retirees in 2019 as those who report as employed or unemployed (i.e., in the786

labor force) in a month in 2019 and report as retired for the first time in787

the next month in 2019.23 Then, we assign each new retiree in 2019 into788

quintiles of the wealth distribution in 2019 (as calculated above) for those789

who are employed and aged between 62 and 72 using their own level of net790

worth. These steps allow us to calculate the fraction of new retirees in 2019 at791

each quintile among all new retirees in 2019. We repeat the same procedure792

to calculate the same moments for new retirees between 2020 and 2021.793

Fraction of new retirees by labor income quintiles. We also obtain794

the fraction of new retirees by labor income quintiles following the same795

procedure as above except that we use total labor income (instead of net796

worth) to classify individuals into quintiles of the labor income distribution.797

We measure labor income as the sum of (i) total weekly wage or salary798

earnings across the weeks of the month from the first job and the second job799

and (ii) profits or losses a business made after correcting for any salary or800

wages that may have been paid to the owner.24801

Appendix A.3. SCF802

We use the 2019 wave of the SCF, downloaded from the website of the Fed-803

eral Reserve Board, for two purposes. First, we compute the average net804

worth. Our definition of total assets covers the following variables: equity805

23The EEVERET variable in SIPP provides information on whether an individual is ever
retired from a job or business. We use this variable to identify first time retirees.

24For the first job, weekly earnings are given by TJB1 WKSUM1 to TJB1 WKSUM5. For the
second job, they are given by TJB2 WKSUM1 to TJB2 WKSUM5. Business profits or losses from
the first and the second business are provided by TJB1 PRFTB and TJB2 PRFTB, respectively.
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measures total direct and indirect holdings of stocks; housing is measured as806

houses+oresre+nnresre, which is the value of the primary residence plus807

other residential property and net equity in non-residential real estate; and808

government bond holdings are computed as notxbnd+mortbnd+govtbnd+809

savbnd+ tfbmutf+ gbmutf, which is tax exempt bonds plus mortgage-back810

bonds plus U.S. government and agency bonds plus savings bonds plus tax-811

free and government bond mutual funds. Corporate bond exposure is equal812

to obnd+obmutf, which is corporate and foreign bonds plus other bond mu-813

tual funds. Private business interests are measured as bus. The difference814

between asset and these assets is classified as other assets. Finally, debt is815

measured directly as debt. Net worth is measured as asset−debt. Second,816

we estimate how returns on savings change based on the level of net worth817

and age, where we use age as the age of the head of household.818

Appendix B. Calibration819

This Appendix provides more details on some aspects of the calibration: the820

estimation of life-cycle labor income process, the calculation of asset returns821

in the data, the procedure to impute returns to the SCF net worth data, and822

a detailed explanation of the SS income function.823

Appendix B.1. Labor income process824

We estimate the parameters of the life-cycle labor income precess given in
Equation (3.1) by closely following French (2005) and Blandin et al. (2023).
To do so, we use the SIPP 2004 panel, covering a period of stable non-
recessionary labor markets in the U.S. We focus on monthly labor earnings
of a sample of individuals whose real wage is above 1/3 of the federal mini-
mum wage at the time, whose usual weekly hours worked is at least 20, and
who are at least 25 years old. Using this sample, we estimate a regression of
the logarithm of monthly labor earnings (adjusted by the CPI) on age and
age squared with individual-fixed effects and weights. This regression yields
our estimates for ψ0, ψ1, and ψ2. Then, using the predicted and the ob-
served values of the logarithm of monthly labor earnings, we obtain a panel
of residuals for labor earnings {ŵi,j}i,j. Next, under the same stochastic pro-
cess of labor earnings residuals as in Blandin et al. (2023), we obtain the
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autocorrelation of the transitory wage component ρw as follows:

ρw =
cov(ŵi,j, ŵi,j+3)

cov(ŵi,j, ŵi,j+2)
.

Given ρw, we calculate the standard deviation of the innovations σϵ as follows:

σϵ =

√
cov(ŵi,j, ŵi,j+2)(1− ρ2w)

ρ2w
.

Finally, the standard deviation of initial wage draws σw0 is simply the stan-825

dard deviation of the residuals for those who are 25 years old.826

Appendix B.2. Asset returns and SCF imputation827

We use data on realized asset returns for various asset classes between 2020828

and 2023 in order to impute returns on net worth for households in the 2019829

SCF data. We explicitly consider returns on the following asset classes:830

stocks, private businesses, real estate, corporate bonds, and government831

bonds. All other asset classes are assumed to have zero real returns dur-832

ing this period.833

All monthly series for asset returns are taken from FRED, from where we834

report the mnemonics. For stocks and private businesses, we use the S&P 500835

(SP500); for housing, we use the S&P CoreLogic Case-Shiller U.S. National836

Home Price Index (CSUSHPISA); for corporate bonds, the ICE BofA US Cor-837

porate Index (BAMLCC0A0CMTRIV); and for government bonds, we construct a838

return index based on the 10-year Treasury rate (DGS10). Finally, we deflate839

all indices using the CPI (CPIAUCSL) and normalize them to one in December840

2019. The cumulative return series are shown in Figure Appendix B.1.841

We now provide details on how we impute returns in the SCF, which are
used in Equation (4.2). The net worth for household i at the beginning of
2019 is given by

NWi,2019m1 =
∑
k∈K

Ak
i −Bi,

where Ak
i is the dollar value of assets of type k and Bi is debt owed by842

the household in dollars. The asset classes k that we consider are the ones843

described above: stocks and private businesses, real estate, corporate bonds,844

government bonds, and other assets. We proxy for Rk
τ using the publicly845
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Figure Appendix B.1: Cumulative real returns on selected asset classes
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Note: This figure provides cumulative real returns on selected asset classes relative to 2019. We assume
that the return on private businesses is the same as for stocks, proxied by the S&P 500.

available return data described above. Then, given data on realized returns846

for each of these returns over some period τ , we estimate the net worth over847

this period as follows:848

NWi,τ =
∑
k∈K

Rk
τA

k
i −Bi.

This procedure allows us to compute the net return on net worth over the849

same period as follows:850

rNW
i,τ =

NWi,τ

NWi,2019m1

− 1.

We note that this imputation procedure assumes that households are per-851

fectly diversified within each asset class and the composition of asset portfo-852

lios in the 2019 SCF remains constant.853

Appendix B.3. SS income function854

As in French (2005), we approximate the current SSA formula for SS benefits855

using a truncated linear function. SS benefits are computed as a product of856

two variables: the Primary Insurance Amount (PIA), which is a concave857
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function of past earnings, and an adjustment factor that is based on the858

distance of one’s retirement age from the Full Retirement Age (FRA, also859

known as the Normal Retirement Age), i.e., the age at which a person can860

retire and claim full benefits. The PIA depends on the calendar year, while861

the FRA depends on a person’s birth year.862

PIA. The main input to the computation of PIA is the average indexed863

monthly earnings (AIME). The AIME is calculated as the minimum between864

social security maximum taxable income ȳmax and an average of a worker’s865

35-year highest indexed monthly labor earnings. We proxy for this average866

by taking the product between the last observation of the transitory wage867

component w before retirement and the average of the lifecycle profile ψ̄.25868

Thus, the relevant measure of earnings for someone who decides to retire is869

the AIME, which is given by870

AIME(w) = min{ȳmax, w × ψ̄}.

Monthly social security maximum taxable income was ȳmax = $11, 075 in
2019. The PIA is equal to 90% of AIME up to a first bend point; plus 32%
of AIME between the first point and a second bend point; plus 15% of AIME
above the second bend point. Since the model steady state is calibrated to
2019, we use the 2019 bend points to calibrate the SS income function: $960
and $5,785, respectively. We use them to the model as parameters ȳ1 = $960
and ȳ2 = $5, 785, respectively. Thus, the PIA formula in the model is:

PIA(w) = 0.9×min{ȳ1, AIME(w)}+ 0.32×max{0,min{ȳ2, AIME(w)} − ȳ1}
+0.15×max{0, AIME(w)− ȳ2}.

FRA modifier. The FRA depends on a person’s birth cohort. To keep the871

analysis tractable, we calibrate the FRA modifier to that of someone born872

between the years of 1943 and 1954, which is likely to represent the majority873

of normal-age retirees for the period we are focusing on. For someone born874

on these dates, the FRA is 66: this is the age at which someone can retire875

25If the worker has worked less than 35 years, the SS formula assigns zeros to the
non-work years. We abstract from keeping track of the worker’s 35-year highest indexed
monthly labor earnings for computational simplicity.
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and earn 100% of the benefits they are entitled to. This person can retire876

and start receiving benefits at any point after they turn 62, but the benefits877

will be scaled down by a penalty that is a function of the number of months878

between the retirement date and the date at which they reach 66. Similarly,879

this person can postpone retirement and increase their benefits by a factor880

that is a function of the same distance and capped at the age of 70. The SSA881

publishes formulas for these penalties and bonuses as a function of birth year882

and distance from the FRA. For early retirement, the penalty is given by883

penalty =

{
5
9
× 0.01× 36 + 5

12
× 0.01× (t− 36) if t > 36

5
9
× 0.01× t if 0 ≤ t ≤ 36,

(Appendix B.1)
where t is the distance, in months, from the age of retirement to the FRA.884

The premium for delayed retirement is equal to 8%/12 per month past the885

FRA, and capped when the retiree reaches the age of 70.886

In the model, we write the FRA modifier as:

τFRA(j) =



0 if age < 62

−1.625929 + 0.005331× j if age ∈ [62, 66)

1 if age = 66

1 + (0.08/12)× (j − 66× 12) if age ∈ (66, 70)

1 + (0.08/12)× (70× 12− 66× 12) if age ≥ 70,

where age j is measured in months, and the formula for those aged between 62887

and 66 is obtained by approximating the early retirement penalty in Equation888

(Appendix B.1) using a linear regression.889

Benefit for non-employed. For agents who do not work, the SS benefit890

is then equal to the product of the PIA and the FRA modifier:891

ȳSS(w, j, ℓ) = PIA(w)× τFRA(j), ℓ = U,N.

Work penalty. As in the data, people may receive social security benefits
while working, but these benefits may be reduced. In particular, benefits are
reduced for people earning above a certain limit, and this limit is different
depending on whether someone is under or above their FRA. These annual
income limits are known as the Earnings Test Annual Exempt Amount and
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were equal to $17,640 and $46,920 in 2019, respectively. For someone under
the FRA, the SS benefit is reduced by $1 for every $2 earned above the limit,
while for people over the FRA, the SS benefit is reduced by $1 for every $3
earned above the limit. We map these limits to the model as ȳa = $17, 640/12
and ȳb = $46, 920/12. For someone aged j, with the current wage w, the
effective SS benefit is then computed as

ȳSS(w, j, E) = ȳSS(w, j,N)− I[j < 66]× 0.5×max{w × ψ(j)− ȳa, 0}
−I[j ≥ 66]× 0.33×max{w × ψ(j)− ȳb, 0}.

Note that, unlike the data, SS benefits in the model depend on the current892

age j and not on the age of retirement. We do this simplification in the model893

for two reasons. First, it avoids the need to keep track of an additional state894

variable for the individual (age of retirement). Second, it avoids having to895

define a more complicated formula to account for instances where individuals896

move between retirement and employment after the age of 62. Further, note897

that regulations do not count UI benefits as earnings.898

Appendix C. Quantitative results899

In this Appendix, we provide details and present additional results related900

to the estimation of shocks and main results presented in Section 5 and 6.901

Appendix C.1. Returns by age902

In Section 5.1, we present estimated mean and median of asset return shocks.903

Here, in Figure Appendix C.1, we provide median returns for agents of dif-904

ferent ages, with Panel (a) focusing on younger agents (30 to 50) and Panel905

(b) focusing on older agents (55 to 75). We show that there is large hetero-906

geneity by age and that younger agents tend to experience higher returns907

along the transitions than older ones. This is primarily due to the fact that908

younger agents tend to own larger shares of their wealth portfolio in assets909

that appreciated substantially during this period, such as housing and stocks,910

and these agents tend to have more leveraged portfolios (i.e., more debt).911
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Figure Appendix C.1: Time series paths for median returns by age
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(b) Old agents
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Note: This figure plots median imputed returns for agents of different ages, computed from the SCF.

Appendix C.2. Shocks before 2020912

In Section 5.1, we present all five shocks after 2019. Here, we provide these913

shocks prior to 2020. Figure Appendix C.2 plots the asset return and job-914

separation shocks pre-2020. The key insight from this figure is that both915

returns and separation shocks are relatively stable prior to the COVID-19916

pandemic, which validates our decision to use the pre-pandemic period as a917

steady state for the model. By construction, the other shocks are not active918

during this period, since there were no economic impact payments, additional919

UI transfers, or additional mortality risk from any source.920

Appendix C.3. Economic impact payments921

Here, we provide details on how we measure economic impact payments in922

the data and map them into our model as shocks.923

There were three rounds of economic impact payments (EIP) after COVID-924

19. For all three rounds, transfer amounts include a supplement associated925

with the number of children under the age of 17 or number of dependents in926

the household. For simplicity, we treat all dependents as children under the927

age of 17. This supplement amount could be substantial, equating the size of928

the base transfer in the case of the second and third round of payments. This929

requires us to adjust transfer amounts based on the size of the household.930

To do this, we rely on data from the Census Bureau on the average number931

of people under and over age 18 per household, by the age of householder,932
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Figure Appendix C.2: Time series paths for shocks pre-2020

(a) Asset returns shock
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(b) Job-separation rate shock
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Note: This figure plots series for the estimated shocks prior to 2020, for the mean and median of the asset
return shock and the job-separation shock.

for 2019.26 For each age group for the householder, we divide the average933

number of people under age 18 by the average number of people who are at934

least 18 years old. We use this ratio as a modifier for how much of the de-935

pendent supplement a householder of a certain age group receives. The 2019936

dependent modifiers are provided in the second column of Table Appendix937

C.1. The effective transfer per eligible individual is then the adult transfer938

plus dependent supplement times the modifier for that individual’s age.939

First round. The first round of transfers was associated with the CARES
Act and took place in March 2020. These transfers consisted of $1,200 per
person plus $500 per child under 17. Using CPI deflators P 2019

2020 = 1.012 and
P 2019
2021 = 1.059, we obtain the following amounts for adults and children:

T adult
2020m3 = 1200/1.012 = 1185.77

T child
2020m3 = 500/1.012 = 494.07.

The effective transfer is then computed as the adult transfer plus the relevant940

modifier times the dependent transfer. For example, for a household between941

25-29 years of age, the effective transfer amounts from the first round is942

26Please refer to America’s Families and Living Arrangements: 2019 from https://

www.census.gov/data/tables/2019/demo/families/cps-2019.html.
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Table Appendix C.1: Effective transfers for each age group of householder

Age of householder Modifier 1st round 2nd round 3rd round

25-29 years 0.34 1353.16 793.76 1769.89
30-34 years 0.61 1486.51 953.78 2126.70
35-39 years 0.78 1571.20 1055.41 2353.30
40-44 years 0.64 1502.36 972.80 2169.11
45-49 years 0.43 1399.79 849.72 1894.66
50-54 years 0.22 1296.05 725.23 1617.09
55-59 years 0.11 1241.44 659.69 1470.96
60-64 years 0.08 1222.83 637.36 1421.15
65-74 years 0.05 1209.94 621.89 1386.66
75 years and over 0.03 1198.20 607.81 1355.26

Note: This table provides a modifier (second column) for how much of the dependent supplement a
householder of a certain age group (first column) should receive. Model counterparts of effective transfer
amounts of economic impact payments from the first, second, and third rounds of payments are provided
in the last three columns.

computed as 1185.77 + 494.07 × 0.34 ≃ 1353.2, which is shown in the third943

column of Table Appendix C.1.944

Second round. The second round of transfers was deployed in December
2020 as a part of the Tax Relief Act of 2020 and consisted of $600 per person
plus $600 per child under the age of 17:

T adult
2020m12 = 600/1.012 = 592.89

T child
2020m12 = T adult

2020m12.

Third round. The third round came in March 2021 with the American
Rescue Plan and consisted of $1,400 per person plus $1,400 per dependent:

T adult
2021m3 = 1400/1.059 = 1322.00

T child
2021m3 = T adult

2021m3.

Appendix C.4. Impact of employment on mortality rates945

In this Appendix, we explain how we discipline the mortality rate shock946

such that it features higher death probability for employed relative to non-947

employed, capturing the potential increase in COVID-19 transmission rates948
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from working in activities that involve physical contact.949

First, we describe the key data inputs to our calculations. Eichenbaum950

et al. (2021) calibrate an increase in probability of infection from work-related951

activities of 17 percent. This is not sufficient for our purposes, as we need952

to convert this into a probability of dying from infection, which may be953

different across age groups. For simplicity, we divide the population into954

those 49 years old and younger and those 50 years old and older. In the 2020955

U.S. Census, 64.4% of the U.S. population was 49 years old and younger.956

From the Centers of Disease Control and Prevention, 6.32% of all COVID-957

related deaths were for people 49 years old and younger.27 Finally, the World958

Health Organization calculated the cumulative case fatality rate (CFR) from959

COVID-19 in the U.S. in 2020 to be 4.92% (i.e., the percentage of people who960

died conditional on infection, note that this is higher than the cumulative961

CFR of around 1% through 2025).28962

Our goal is to compute the object Pr(COVID death|age ≥ 50). This963

is equal to Pr(COVID death&age ≥ 50)/Pr(age ≥ 50) The denominator is964

equal to 0.356, from the Census data. Using Bayes’ Theorem, we can write965

Pr(age ≥ 50|COVID death) = Pr(COVID death|age ≥ 50)× Pr(age ≥ 50)

Pr(COVID death)
.

We can then rearrange and solve for our object of interest:

Pr(COVID death|age ≥ 50) = Pr(age ≥ 50|COVID death)× Pr(COVID death)

Pr(age ≥ 50)

= (1− 0.0632)× 0.0492

1− 0.644
= 0.1295.

Finally, we can infer the probability of COVID death for those under the age
of 50 by solving:

Pr(COVID death|age < 50) =
Pr(COVID death)− Pr(COVID death|age ≥ 50)× Pr(age ≥ 50)

Pr(age < 50)

= 0.0048.

Thus, the added probability of dying given employment is equal to 0.17966

27See https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm.
28See https://ourworldindata.org/grapher/covid-cfr-exemplars.
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Figure Appendix C.3: Changes in aggregate labor market moments: No housing returns
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(b) Unemployment rate
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(c) Employment/population
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Note: This figure plots the paths of the aggregate retired share (i.e., the fraction of retirees in the
population) (Panel (a)), unemployment rate (Panel (b)), and employment-to-population ratio (Panel (c))
in the data and the model. We provide results from two different exercises in the model: the baseline
exercise (blue lines) and a version where we do not consider returns on housing (green lines). We take
six-month moving averages both in the data and in the model, and plot the percentage point deviation
from the 2019 average in the data and stationary state of the model.

times 0.1295 for those over the age of 50 and 0.17 times 0.0048 for those967

under the age of 50. Notice that we assume equal infection rates for both968

age groups, which is a reasonable assumption as 32% of all COVID-19 cases969

in the US were for people over the age of 50 as of 2023—a similar fraction to970

their share of the population.971

Appendix C.5. Results without housing returns972

In our baseline exercise, we compute returns shock using the observed changes973

in returns for liquid assets such as bonds and stocks and for illiquid assets974

such as housing. While the appreciation of house prices should create some975

wealth effects on labor supply, it is insightful to analyze results in this exercise976

without taking into account house price appreciation during this period, as977

people may have not realized and/or internalized such capital gains.978

In this section, we repeat our exercise but excluding housing returns from979

the estimated rt(a, j) function. We present the results for the aggregate980

labor market moments in Figure Appendix C.3. Clearly, excluding housing981

appreciation from the exercise slightly moderates the increase in the retired982

share and therefore the drop in employment-to-population ratio. There is983

very little effect on the unemployment rate, which is consistent with our984

baseline results that returns do not seem to play an important role in driving985

unemployment dynamics.986

15



Figure Appendix C.4: Change in average wealth along the transition: Data vs model
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Note: This figure plots the change in the average net worth during 2020-2023 in the data and the model.
The data series are computed using the imputation procedure described in Section 4.1. The model series
is obtained under a similar imputation procedure to make the two series comparable.

Appendix C.6. Model validation along the transition987

Section 6.3 in the main text provides results to compare the predictions of our988

model along the transition with changes in outcomes in the data. In doing989

so, we discuss two additional results that are not presented in Section 6.3.990

Here, we now provide these two results. In particular, we compare changes991

in the average net worth and changes in monthly flow rates into and out of992

retirement in the model and the data during 2020-2023.993

Change in the average net worth. Figure Appendix C.4 plots the994

average net worth in the SCF for the period in analysis, computed using the995

imputation procedure described in Section 4.1, and the equivalent wealth996

series in the model along the transition.29 We plot percent changes relative997

to the baseline, which is the average net worth in the 2019 SCF for the998

data and the stationary state for the model. The model captures the broad999

29We follow a similar imputation procedure in order to make the two series comparable,
taking the initial joint distribution of age and net worth, and iterating forward using the
estimated return function rt(a, j). In particular, for the purposes of this figure only, we do
not use the model’s decision rules as we cannot account for changes in consumption/savings
behavior either in the data.
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Figure Appendix C.5: Changes in flow rates into and out of retirement: Data vs model

(a) Flow rate into retirement
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(b) Flow rate out of retirement
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Note: This figure compares changes in monthly flow rates into (Panel a) and out of (Panel b) retirement
in the data and model. To compute the monthly flow rate into retirement in the data, we use CPS and
measure, for each month, we compute the ratio of the number unemployed or employed individuals in
a given month who become retired in the next month, to the total number of unemployed or employed
individuals in that month. We obtain the monthly flow rate out of retirement in a similar manner. The
model calculations follow the same steps. These figures present pp changes from the average flow rates in
2019 in the data and from the average flow rates in the stationary state of the model.

movements in the average net worth, slightly overstating its rise after 2021.1000

This result signals that our estimated return function does a good job of1001

matching the evolution of net worth during this period.1002

Changes in monthly flow rates into and out of retirement. Figure1003

Appendix C.5 compares changes in monthly flow rates into (Panel a) and1004

out of (Panel b) retirement in the data and model. To compute the monthly1005

flow rate into retirement in the data, we use CPS and measure the ratio1006

of the number unemployed or employed individuals in a given month t who1007

become retired in the next month t+ 1, to the total number of unemployed1008

or employed individuals in that month t. Similarly, we compute the monthly1009

flow rate out of retirement in the data by calculating the ratio of the number1010

of retired individuals in t who become unemployed or employed in t + 1, to1011

the total number of retired individuals in t. We use individual weights when1012

calculating these moments and repeat these calculations for each month. We1013

compute the same moments in the model by following the same steps. Both1014

in the data and the model, we then compute pp changes from the average flow1015

rates in 2019 in the data and from the average flow rates in the stationary1016

state of the model.1017
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Panel (a) plots changes in the monthly flow rate into retirement in the1018

data and model.30 The model replicates well the initial spike in 2020, match-1019

ing both the level and the dynamics.1020

The model fails to account for the observed rise in late 2022. Notice that1021

this rise in the flow rate into retirement in data is reflected in Panel (a) of1022

Figure 5.2 where the retired share in the data starts to rise after 2022 until1023

early 2023. The model is unable to capture this increase because it is driven1024

by people younger than 62. To see why, compare the evolution of excess1025

retirements per our baseline definition in Panel (b) of Figure 2.1 (based on1026

self-reported retirement in the CPS) to that of Panel (b) of Figure Appendix1027

A.2, where we consider an alternative definition of retirement that includes1028

non-participants aged 62 and older. Notice that while the baseline definition1029

features an increase in the retired share in late 2022, the alternative definition1030

does not. Given the definition of retirement in the model, we are therefore1031

unable to capture this rise by construction.1032

Similarly, Panel (b) shows that the model does a good job in matching1033

flows out of retirement: the initial decrease in 2020, and then slow recovery1034

back to the baseline (steady state/pre-pandemic) level.1035

30Monthly flow rates into and out of retirement in the model are volatile during the
transition period mostly because of observed fluctuations in job-separation rate shocks by
quintiles of the labor income distribution, as shown in Panel (b) of Figure 5.1.
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