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Abstract

Between 2020 and 2023, the fraction of retirees in the working-age population
in the U.S. increased above its pre-pandemic trend. Several explanations have
been proposed to rationalize this gap, including increases in net worth, the
deterioration of the labor market with higher job separations, the expansion
of fiscal transfer programs, and higher mortality risk. We develop an incom-
plete markets, overlapping generations model with a frictional labor market
to quantitatively study the interaction of these factors and decompose their
contributions to the rise in retirements. We find that new retirements were
concentrated at the bottom of the income distribution, and the most impor-
tant factors driving the rise in retirements were higher job separations and
the expansion of fiscal transfers. We show that our model’s predictions on
aggregate labor market moments and cross-sectional moments on retirement
patterns across income and wealth distributions are in line with the data.
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1. Introduction1

The rise in the fraction of retirees in the working-age population in the U.S.2

since the beginning of the COVID-19 pandemic has garnered attention from3

both researchers and policy-makers (Hobijn and Şahin, 2021; Montes et al.,4

2022). In late 2021, the fraction of retired individuals in the working-age5

population rose 0.7 percentage points (pp) over what the pre-pandemic trend6

predicts—close to 2 million excess retirements. This phenomenon slowed the7

recovery of the U.S. labor force participation rate (LFPR), which remained8

0.8 pp below its pre-pandemic level in May 2024. Several factors, some of9

which have been individually studied, are natural candidates to explain this10

phenomenon: (i) wealth effects due to elevated returns on assets (French,11

2005), (ii) poor labor market conditions due to higher job separations (Hobijn12

and Şahin, 2022), (iii) expansion of fiscal transfers (French and Jones, 2001),13

(iv) expansion of the unemployment insurance (UI) program (Veracierto,14

2008), and (v) increased mortality risk (Blundell et al., 2016). In this paper,15

we develop a unified approach to quantitatively analyze the interaction of16

these factors and decompose their contributions to the rise in retirements.17

Our main finding is that initially higher job separations and the subsequent18

provision of economic impact payments were the key drivers of increased19

retirements, which predominantly came from low-income workers.20

Our paper makes three contributions. First, we present novel empiri-21

cal results regarding the relationship between retirement decisions, wealth,22

and labor income before and after the COVID-19 episode. Using microdata23

from the Survey of Income and Program Participation (SIPP), we find that,24

in 2019, the fraction of new retirees is only slightly increasing in wealth25

quintiles but strongly decreasing in income quintiles. Importantly, we also26

find that these distributional patterns are remarkably stable between 202027

and 2021. Overall, these observations are informative for the predictions of28

our quantitative model, as they suggest that increased retirements were not29

driven by wealthier individuals but by income-poor individuals.30

Second, we construct a heterogeneous agents model that allows us to ac-31

count for potential factors behind the rise in retirements. Our framework32

incorporates a frictional labor market in an otherwise standard incomplete33

markets, overlapping generations (OLG) model. Besides making a consump-34

tion/savings decision, agents also choose their employment and labor force35

participation status, endogenizing flows in and out of retirement. The model36

also features realistic life-cycle profiles for labor income, social security pay-37
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ments, heterogeneous returns on savings, and heterogeneous unemployment38

risk. Overall, the novelty of our framework is that it combines a search39

and matching model of the labor market with a lifecycle incomplete markets40

model, a serious modeling of retirement decisions, and various types of fiscal41

transfers. We calibrate this model to the U.S. economy in 2019, matching a42

series of moments related to the distributions of wealth and labor income, as43

well as labor market flows. We validate the predictions of this model at the44

stationary equilibrium against untargeted moments, showing, in particular,45

that it captures the shares of new retirees by wealth and income quintiles.46

We use the model to quantitatively study recent labor market dynamics.47

This is important since, to the best of our knowledge, there is no high-48

frequency dataset that allows us to track monthly labor market flows and, at49

the same time, contain information on wealth, returns on wealth, eligibility50

and receipt of various fiscal transfers during the pandemic, and mortality51

outcomes. This makes it necessary to use a model to understand recent52

retirement dynamics. Our main exercise consists of feeding sequences of ex-53

ogenous shocks that represent the five channels we focus on to the stationary54

state of the model. These shocks are measured from the data and mapped55

into the model without targeting any endogenous aggregate labor market56

moments or cross-sectional moments from the microdata during 2020-2023.57

These shocks capture (i) the heterogeneous movements in returns to wealth,58

(ii) the heterogeneous rise of job-separation rates across the labor income59

distribution, (iii) economic impact payment programs, (iv) expansion of UI,60

and (v) the increase in mortality risk that was steeper for older people.61

Third, we use the model to decompose the importance of each channel be-62

tween 2020 and 2023. We first demonstrate that the model captures well the63

changes in untargeted aggregate labor market moments in the data, such as64

excess retirements, the unemployment rate net of temporary unemployment,65

and the employment-to-population ratio. Next, our decomposition exercises66

reveal that three of the five channels we consider played an important role67

in explaining excess retirements, with higher job separations being a more68

important driver in 2020 and 2021 (explaining around 75% of the rise) and69

economic impact payments playing a larger role in 2022 and 2023 (explaining70

64% and 81%, respectively). The rise in mortality risk attenuate the effects71

of the other forces, and is crucial to get the magnitudes right.72

We also compare the cross-sectional predictions of the model along the73

transition to changes in relevant moments from the microdata between 2020-74

2023 relative to 2019. We find that the model is able to broadly account75
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for the rise in the average wealth, the compression of the wealth distribu-76

tion, changes in fractions of new retirees by wealth and income quintiles, and77

changes in monthly flow rates in and out of retirement. Importantly, as in78

the data before and after the pandemic, our model predicts that new retirees79

are typically income poor, but not necessarily wealth poor. We argue that80

this result is consistent with the predictions of our decomposition exercise,81

in that the increase in retirements did not come from relatively wealthy in-82

dividuals, but from low-income individuals who experienced larger increases83

in job separations and were relatively more sensitive to fiscal transfers.84

Related literature. This paper contributes to the literature on retirement85

patterns and economic decisions of retirees in terms of consumption and86

savings (French and Jones, 2001; De Nardi et al., 2010, 2016; Jones and87

Li, 2018) as well as labor supply (Cheng and French, 2000; Coronado and88

Perozek, 2003; Benson and French, 2011). Relative to this work, we develop89

an incomplete markets, OLG model with a frictional labor market, and a90

detailed social security system. This model allows us to analyze how changes91

in labor market frictions and fiscal transfers—that impact the magnitude of92

the surplus from employment relative to non-employment—affect retirement93

decisions in a realistic manner.94

Our paper also contributes to a recent empirical literature that focuses95

on changes in labor market participation and retirement patterns after the96

pandemic (Hobijn and Şahin, 2021; Hobijn and Şahin, 2022; Nie and Yang,97

2021; Faria-e-Castro, 2021b; Montes et al., 2022). These studies were very98

useful in guiding researchers and policy makers to understand underlying99

sources behind these patterns. Relative to this literature, we develop a uni-100

fied approach using a structural model that allows us to study interactions101

of these potential sources and decompose their relative contribution to ag-102

gregate labor market moments. Importantly, we also compare predictions of103

our model against relevant moments from macro and micro data.104

2. Excess retirements in the data105

In this section, we describe empirical trends in the aggregate fraction of the106

population that is retired in the U.S. with a special focus on the 2020-23107

period, and use microdata to study retirement patterns across the wealth108

and income distributions during the same period.109
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2.1. Aggregate trends110

The U.S. LFPR experienced its largest drop on record at the onset of the111

COVID-19 pandemic in early 2020, falling from 63.3% in January 2020 to112

60.1% in April 2020. While there was a quick rebound from this 50-year113

minimum, it has not fully recovered to its pre-pandemic levels: 62.5% as114

of May 2024. Most of this gap can be attributed to a persistent drop in115

the LFPR for those aged 55 and over (38.2% in May 2024 vs. 40.2% in116

January 2020), as the LFPR or prime-age workers has actually exceeded its117

pre-pandemic level. This pattern motivates us to focus on older workers.118

Several studies have documented a large increase in the share of the pop-119

ulation that is retired over the same period (Nie and Yang, 2021; Faria-e-120

Castro, 2021b). Figure 2.1(a) plots the retired share, measured as the frac-121

tion of individuals who report to be retired among all individuals (excluding122

those in armed forces) aged 16 and over, in the U.S. from 1995 to the end123

of 2023 using data from the Current Population Survey (CPS).1 The retired124

share was roughly constant until the late 2000s, when it started growing at a125

roughly linear trend (dashed line), estimated between June 2008 and January126

2020, the last full month before the effects of the pandemic were felt in the127

economy. The rise in the retired share is plausibly related to demographic128

factors: 2008 was the first year in which Baby Boomers became eligible to129

retire and collect Social Security benefits. There is a significant gap between130

the linear trend and the actual retired share between 2020 and 2023, plotted131

in Panel (b): the retired share increased by 0.7 pp above the trend in late132

2021. This gap corresponds to close to 2 million people who were retired be-133

yond what the pre-pandemic trend implies.2 We refer to this gap as “excess134

retirements,” and analyzing its drivers is the main focus of this paper.135

2.2. Aggregate shocks and their effects on retirement136

The 2020–23 period was marked by a public health emergency that triggered137

very large fluctuations in the U.S. economy, driven by both individuals’ opti-138

mization behavior and by an unprecedented macroeconomic policy response.139

1Appendix A.1 has details on the construction of the data and shows that our mea-
surement is robust to alternative definitions of retirement.

2Other filters, such as the one proposed by Hamilton (2018), the HP filter, and other
deterministic trends, also generate above-trend increases of similar magnitudes in 2020.
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Figure 2.1: Excess retirements between 2020 and 2023

(a) Retired share and linear trend
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Note: Panel (a) plots the retired share in the U.S. which we calculate as the fraction of individuals who
report to be retired in the CPS among all individuals aged 16 and over. The linear trend is estimated
between June 2008 and January 2020. Panel (b) plots 6-month moving averages of deviations from trend.

This emergency consisted of an airborne respiratory disease that dispropor-140

tionately put older people at risk of serious illness and death. According to141

the Centers for Disease Control and Prevention, 94% of all COVID-19-related142

deaths occurred among people aged 50 and older.3 The heightened risk to143

older individuals plausibly influenced their labor force participation decisions,144

especially for those in occupations involving frequent physical contact. This145

motivates us to include mortality shocks in our model.146

The early phase of the COVID-19 pandemic saw the highest unemploy-147

ment rate in the postwar era—14.8% in April 2020. It is well documented148

that labor market conditions significantly affect labor force participation de-149

cisions (Hobijn and Şahin, 2021), which motivates us to include the state of150

the labor market as a potential driver of excess retirements in our model.151

The swift economic recovery beginning in late 2020, combined with large-152

scale fiscal and monetary interventions, led to historically large returns across153

a variety of asset classes widely held by U.S. households.4 Older households,154

being closer to retirement, tend to be wealthier and thus more likely to benefit155

from such returns. Moreover, the literature finds that households approach-156

ing retirement are more sensitive to wealth effects arising from changes in157

3See https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm.
4See Appendix B.2 for time series of cumulative real returns for various asset classes

during this period.
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asset valuations (Cheng and French, 2000; French, 2005). We therefore con-158

sider fluctuations in asset returns as a potential source of wealth effects that159

could have contributed to the increase in retirements.160

Finally, the fiscal policy response to the public health and economic emer-161

gency included household transfer programs that were large by historical162

standards. These took the form of three rounds of economic impact pay-163

ments and a major expansion of unemployment insurance benefits. Such164

programs may have generated income and wealth effects that plausibly in-165

fluenced individuals’ labor force participation decisions (French and Jones,166

2001; Veracierto, 2008).167

2.3. Micro patterns168

A key starting point to understanding the causes of this gap is identifying169

the worker groups where retirements were concentrated. In particular, given170

the potential effects of labor market disruptions, fiscal transfers, and asset171

returns on labor force participation decisions that we discussed above, we172

examine how retirement varied across both the wealth and income distribu-173

tions. Later, we use these findings to validate model predictions.174

As the CPS does not provide information on wealth holdings, we use data175

from the 2020, 2021, and 2022 panels (covering data from all months between176

2019 and 2021) of the SIPP, which provide information on employment sta-177

tus, wealth, and labor income.5 Our measure of wealth is total household178

net worth, while labor income is the total wages and salaries from all jobs.179

Using this data, we identify new retirees in 2019 as those who report being180

in the labor force in a month in 2019 and report being retired for the first time181

in the following month. We then assign each new retiree to quintiles of the182

wealth distribution of employed individuals aged between 62 and 72. This183

allows us to calculate where each new retiree in 2019 sit within the wealth184

distribution of older employed workers eligible for retirement benefits—the185

5We use CPS excess retirements as our baseline estimate for two reasons. First,
monthly transition rates between employment statuses are underestimated in the SIPP
relative to the CPS (Krusell et al., 2017; Birinci and See, 2023). Second, the most recent
SIPP (2022) covers the reference period until December 2021, preventing us from studying
aggregate retirement dynamics after 2021. Despite these limitations, the rise in the retired
share in 2020-21 is also observed in the SIPP. This allows us to analyze the underlying
retirement patterns across the wealth and income distributions during this period.
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Figure 2.2: Retirement patterns in the micro data

(a) New retirees by wealth
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(b) New retirees by labor income
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Note: Panel (a) shows the fraction of new retirees across wealth quintiles, separately for those retiring in
2019 and 2020–2021, using SIPP data. Panel (b) repeats this for labor income.

relevant demographic for our analysis. We then recompute the same moments186

between 2020 and 2021 to understand how retirement patterns by wealth187

holdings evolved during the pandemic.6188

Figure 2.2(a) plots the fractions of new retirees during each period (2019189

or 2020-21) who are in each wealth quintile. In 2019, the fraction of new190

retirees is slightly increasing in wealth quintiles, suggesting that new retirees191

are relatively wealthier, even though this relation is weak. Importantly, we192

find that this relationship remained mostly unchanged in 2020-21 relative to193

2019. In other words, we find that the increase in retirements during the194

pandemic does not seem to be driven by wealthier people.195

Figure 2.2(b) repeats the same exercise for labor income, using the distri-196

bution of labor income for those who are employed and aged between 62 and197

72. For new retirees, labor income refers to earnings prior to retirement. In198

2019, we find that new retirees typically have lower incomes. As with wealth,199

this pattern also changes little during 2020-21. Thus, most retirements in200

2020-21 were still drawn from lower quintiles of the income distribution.201

In sum, new retirees have lower income and are slightly wealthier relative202

to the employed workers at the age of retirement. This relationship did not203

change much during the pandemic.204

6Appendix A.2 provides details on the data and construction of these moments.
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3. Model205

We now present a decision model of retirement that captures the joint distri-206

bution of retirement, income, and wealth in 2019. We combine a partial-207

equilibrium heterogeneous-agents incomplete markets OLG model with a208

frictional labor market to quantify contributions of various factors to the209

rise in the retired share between 2020 and 2023.210

Environment. Time is discrete and infinite. The economy is populated211

by a stationary mass of overlapping generations of agents. Agents are born212

at age 25 and die with certainty at age 90. They are indexed by five state213

variables: physical age in months j ∈ {25× 12, 25× 12 + 1 . . . , 90× 12}, age214

of retirement in years k ∈ ∅ ∪ {62, . . . , 70} (where ∅ denotes no retirement),215

wealth a ∈ [−a,∞), employment status ℓ ∈ {E,U,N} (employed, unem-216

ployed, out of the labor force), and wage w ∈ R+ if employed or last wage217

if not employed. Additionally, they face an age- and employment-status-218

dependent probability of death, 1− π(j, ℓ).219

Preferences are given by u(c, ℓ, j) = c1−σ

1−σ
− I[ℓ = E]ϕE(j)− I[ℓ = U ]ϕU(j),220

where σ is the elasticity of intertemporal substitution, ϕE(j) is the disutility221

of working, and ϕU(j) is the disutility of looking for a job while unemployed.222

There is a risk-free asset that pays return r(a, j) on savings (a ≥ 0) and rb223

on borrowings (a < 0). This is a single-asset model where the rate of return224

depends on the level of wealth and age: a tractable way of capturing portfolio225

heterogeneity across the wealth distribution.226

Labor income depends on a stochastic wage w that evolves according to a
persistent process F (w′|w), and an age-specific profile ψ(j). We follow French
(2005) and Blandin, Jones and Yang (2023) in modeling income dynamics.
Letting Wj = wj × ψ(j) denote the actual income of a worker aged j:

logWj = logψ(j) + logwj

logwj = ρw logwj−1 + εwj

εwj ∼ N(0, σϵ), i.i.d.

logw0 ∼ N(0, σw0), (3.1)

where logψ(j) = ψ0 + ψ1j + ψ2j
2 is a quadratic function of age.227

At the end of each period, mortality shocks and labor market shocks, i.e.,228

job separation and job-finding shocks, realize. At the beginning of the next229
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period, agents age, the stochastic wage component w realizes, and then they230

choose their labor market status between available options. Their choice231

of labor market status determines the value function they experience, and,232

together with their age, also determines their age of retirement k as per233

Equation (3.2). Employed agents may lose their jobs with probability δ(w, j)234

at the end of the period, and they can choose to become unemployed or non-235

participant at the start of the next period. If they keep their jobs, they learn236

their updated wage w in the next period and choose to stay in their jobs or237

exit to non-employment (either as unemployed or non-participant). Similarly,238

unemployed and non-participant agents may find a job with probability f239

and γf , respectively, at the end of the period. Then, at the start of the next240

period, they draw wage w from a distribution and then choose to become241

employed or non-employed (either as unemployed or non-participant). If242

they cannot find a job, they can switch between unemployment and non-243

participation freely. Once labor force status decisions have been made, agents244

choose consumption and savings.245

In the model, we classify individuals 62 and older who are out of the labor246

force as retired.7 Age 62 is the minimum eligibility age for Social Security247

(SS) benefits in the U.S., making it the earliest point at which retirement248

meaningfully differs from non-participation.8 SS benefits are denoted by249

ȳss(w, j, k, ℓ) and depend on the stochastic wage, age, age of retirement, and250

labor force status.251

It is useful, at this point, to specify the law of motion for the age of252

retirement, k, which matters for the calculation of SS benefits: the age of re-253

tirement is k = ∅ until the first time an individual becomes a non-participant254

on or after the age of 62, at which point it becomes k = age(j). Here, age(j)255

is a function that converts physical age in months j to physical age in years,256

as we express k in years for computational reasons. We set k = 70 for all257

individuals who did not retire before the age of 70.9 Formally, we can write:258

7We have experimented with a stricter definition of retirement where we also require
that agents never come back to the labor force to be considered as retired. Our quantitative
results barely change under this alternative definition.

8For tractability we are, in practice, conflating two decisions: that to stop participating
after age 62, and that to start claiming SS benefits.

9As we explain in Section 4, premia for late retirement are maxed out at age 70 and so
the age of retirement no longer matters for the calculation of benefits of those who have
not yet retired at this point.
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k′ =


∅, if age(j′) < 62 ∨ (ℓ′ ̸= N ∧ k = ∅)
age(j′), if age(j′) ∈ {62, . . . , 69} ∧ ℓ′ = N ∧ k = ∅
70, if age(j′) ≥ 70 ∧ k = ∅
k, if k ̸= ∅.

(3.2)

Employed. The problem for an employed individual is given by:

V E(j, k, a, w) = max
c,a′

u(c, ℓ = E, j) + βπ(j, ℓ)

[
δ(w, j)max{V U(j′, k′, a′, w), V N(j′, k′, a′, w)}

+[1− δ(w, j)]

∫
w′
max{V E(j′, k′, a′, w′), V U(j′, k′, a′, w), V N(j′, k′, a′, w)}dF (w′|w)

]
s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a
y = w × ψ(j) + ȳss(w, j, k, ℓ = E) + r(a, j)× a,

where k′ evolves according to Equation (3.2), j′ = j + 1, a is the borrowing259

constraint, and T (y, j, a) are government transfers, which depend on total260

income, age, and wealth. An employed agent has total income y, consisting261

of labor income Wj = w × ψ(j), SS income ȳss(w, j, k, ℓ = E) (details of262

which are discussed in Section 4), and capital income. At the end of the263

period, she may exogenously separate from her job with probability δ(w, j),264

which depends on the stochastic component w of the income process as well265

as her age j. If a separation occurs, she can choose to become unemployed or266

leave the labor force. If no exogenous separation takes place, she can choose267

to either stay in the current job or quit to non-employment (ℓ = U or ℓ = N).268

We note that, when individuals are non-employed, we still keep track of the269

last employment wage w as it affects the amount of UI and SS income.270

Unemployed. Instead of labor income, unemployed agents derive income
from home production and UI. We allow the home production level h(j) to
depend on age and the UI replacement rate b(w, j) ∈ [0, 1] to depend on last
labor income Wj, i.e., w and j. Thus, UI benefits for an unemployed with
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last wage w and age j are b(w, j)× w × ψ(j). The problem of this agent is:

V U(j, k, a, w) = max
c,a′

u(c, ℓ = U, j) + βπ(j, ℓ)

[
(1− f)max{V U(j′, k′, a′, w), V N(j′, k′, a′, w)}

+f

∫
w′
max{V E(j′, k′, a′, w′), V U(j′, k′, a′, w), V N(j′, k′, a′, w)}dF (w′|w)

]
s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a
y = b(w, j)× w × ψ(j) + h(j) + ȳss(w, j, k, ℓ = U) + r(a, j)× a.

At the end of the period, an unemployed agent receives a job offer with271

probability f . If an offer is received, she draws a wage w′ from F at the272

start of the next period and decides whether to become employed with labor273

income w′ × ψ(j′), remain unemployed, or leave the labor force. If no offer274

is received, she can still choose to leave the labor force.275

Non-participant. Agents who are out of the labor force receive income
from home production h(j), but are ineligible for UI benefits. To capture
direct transitions from non-participation to employment in the data, we as-
sume that a non-participant receives a job offer with probability γ × f , with
γ < 1. If an offer is received, they can choose to become employed, unem-
ployed, or non-participant. If no offer is received, they can still choose to
become unemployed. The problem of a non-participant is given by:

V N(j, k, a, w) = max
c,a′

u(c, ℓ = N, j) + βπ(j, ℓ)

[
(1− γf)max{V U(j′, k′, a′, w), V N(j′, k′, a′, w)}

+γf

∫
w′
max{V E(j′, k′, a′, w′), V U(j′, k′, a′, w), V N(j′, k′, a′, w)}dF (w′|w)

]
s.t. c+ a′ = y + a+ T (y, j, a)

a′ ≥ −a.
y = h(j) + ȳss(w, j, k, ℓ = N) + r(a, j)× a.

Death and birth. At age j = 91, all agents die with probability 1 and276

obtain zero value, V ℓ(j = 91, k, a, w) = 0, ∀(k, a, ℓ, w). They are replaced277
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with newborns, who enter the model at age j = 25, drawing their initial278

wealth from a distribution Q(a) and initial wage w0 from Equation (3.1).279

We assume that agents enter the model as unemployed.280

4. Calibration281

Our calibration strategy sets some parameters externally while internally282

calibrating most to match key moments related to labor market and demo-283

graphic outcomes, as well as income and wealth distributions. Since we use284

our model to understand labor market dynamics between 2020–2023, we in-285

terpret the model’s stationary state to be the U.S. economy at the end of286

2019. A period is a month and the numeraire is set to be 2019 dollars.287

4.1. Functional forms and external parameters288

We assume that disutility functions for the employed and unemployed depend289

linearly with the individual’s age, ϕℓ(j) = ϕℓ
0 + ϕℓ

1 × j, ℓ = E,U . The job-290

separation rate varies with the labor income of the worker according to291

δ(w, j) = δ̄ × exp

[
ηδw × w × ψ(j)− W̄

W̄

]
, (4.1)

where W̄ is the average labor income in the economy. Shimer (2005) uses a292

similar functional form when defining how the aggregate job-separation rate293

changes with productivity over time. The formula for the replacement rate294

is linear in labor income, b(w, j) = b0+ b1×w×ψ(j), and the value of home295

production is given by h(j) = h̄0[1 + h̄1 × I[j ≥ 62]]. The fiscal transfer296

function T (y, j, a) is set to zero at the stationary state, and described in297

detail in Section 5. The distribution of wealth for the newborn Q(a) is log-298

normal with parameters (µa, σa); we choose the mean and standard deviation299

to match the wealth distribution of 25-year olds from the SCF. The resulting300

values are µa = $8, 685.32 and σa = $39, 597.24. We also set the coefficient301

of relative risk aversion σ to 2, a standard value in this class of models.302

Next, we describe in detail how we calibrate the following key inputs: (i)303

the stochastic process and life-cycle profile for labor income Wj; (ii) the asset304

return function r(a, j); (iii) the survival probabilities π(j, ℓ); (iv) the home305

production function h(j); and (v) the SS income function ȳss(w, j, k, ℓ).306
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Labor income process. Using monthly data on labor earnings from the307

SIPP, we estimate the parameters of the life-cycle labor income process by308

closely following French (2005) and Blandin et al. (2023). Appendix B.1 pro-309

vides details on the estimation. The estimated persistence for the stochastic310

wage component is ρw = 0.961, with a standard deviation of σϵ = 0.027. The311

estimated dispersion for the distribution of initial wage draws is σw0 = 0.596.312

For the life-cycle profile, we estimate ψ0 = 6.979, ψ1 = 0.054, ψ2 = −0.001.313

With the estimated parameters, we simulate the labor income process tak-314

ing into account life-cycle dynamics and unemployment risk, and obtain an315

estimate for W̄ , the average real labor income in the economy that is used316

as a parameter for δ(w, j).10 This procedure yields W̄ = $3, 395.317

Asset returns. We parametrize the return function r(a, j) using estimated318

returns on net worth. To this end, we follow the imputation process that com-319

bines the 2019 SCF with data on aggregate returns for different asset classes.320

This imputation process assumes that the composition of asset portfolios in321

the 2019 SCF remains constant, and that households are perfectly diversified322

within each asset class. We compute returns only for changes in net worth323

that arise from asset classes for which we observe data on realized returns.11324

For calibration purposes, we consider the monthly return on net worth325

for each month in 2019. We focus on households with a ratio of net worth326

to annual income between 0 and 15 in 2019. This excludes households with327

negative net worth, as our model differentiates between borrowing and saving328

rates. It also excludes the very wealthy, as the model is not designed to329

capture extremely high wealth levels. For this sample, we estimate:330

rNW
i,τ = β0 + β1agei + β2age

2
i + β3age

3
i + β4

(
NWi

12× W̄25y

)
+ εi, (4.2)

where rNW
i,τ is the return on net worth during each month τ of 2019, agei is331

the age of the individual in years, and
(

NWi

12×W̄25y

)
is the ratio of net worth332

10In particular, we simulate a simplified version of our model that incorporates the
mortality parameters to capture life-cycle dynamics as well as the average job-finding and
job-separation rates from the data. We do this to avoid having to calibrate the parameter
W̄ internally, which would have required solving a fixed-point problem.

11Appendix A.3 provides more details about the data and Appendix B.2 presents the
details of these calculations.
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to the average annual labor income of a 25 year old. We then average all333

coefficients across months of 2019.12 We set the borrowing rate to be equal334

to maxa,j r(a, j) plus a monthly spread of 0.005: the maximum returns on335

savings to prevent arbitrage, plus an annualized borrowing spread of 6%.13336

Survival probabilities. To calibrate π(j, ℓ), we use the 2019 Actuarial337

Life Table from the Social Security Administration (SSA), which reports338

conditional death probabilities for males and females in each age group. We339

compute an equally weighted average for men and women for each age group,340

and convert these annual conditional death probabilities into monthly prob-341

abilities. There is no dependence in employment status ℓ at the steady state.342

Home production. We assume that income from home production is343

equal to a constant h̄0 for agents under 62, at which point it becomes equal344

to 1.15 × h̄0, i.e., h̄1 = 0.15. This value is taken from Dotsey et al. (2014),345

who show that home goods consumption for older workers starts increasing346

at around age 60, and is about 25% larger at age 90. We take an average of347

15% for those older than 62. We internally calibrate h̄0 in Section 4.2.348

Social Security income. To parametrize and calibrate the SS income349

function ȳss(w, j, k, ℓ), we closely follow actual U.S. regulations, as in French350

(2005). This function is the product of two components. The first is the351

Primary Insurance Amount (PIA), a piece-wise concave function of a measure352

of past earnings, up to a limit. In order to keep the model tractable, we proxy353

past earnings by the product of the last realization of the stochastic wage354

component w before retirement and an average of the life-cycle component355

ψ(j). The cap on this measure of earnings as well as the bend points that356

generate concavity are all set to their 2019 values. The second component is357

a retirement-age-dependent modifier: individuals can begin collecting Social358

Security benefits at age 62 but face penalties if they retire before the full359

retirement age, which varies by birth cohort. We set the full retirement age360

(FRA) to 66, as in 2019. Additionally, they get a benefit if they retire past361

12Among several other parametrizations, the specification in Equation (4.2) provided
the best combination of simplicity and explanatory power.

13This falls in between the estimates of Lee et al. (2021) using Danish data (4%) and
the implied borrowing spread used in Kaplan et al. (2018) (about 8%).
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Table 4.1: Internally calibrated parameters

Parameter Value Moment Source Data Model

β 0.996 Fraction of population w/ NW ≤ 0 under 62 SCF 0.116 0.116
a −7894.46 Median credit limit/quarterly labor income SCF 0.740 0.720
h̄0 1000.01 Retired share CPS 0.213 0.230
b0 0.774 Average UI replacement rate SIPP 0.400 0.371
b1 −1.25× 10−4 Q1/Q5 ratio of UI replacement rate SIPP 2.015 1.789
ϕE
0 1.37× 10−4 Unemployment rate, all ages CPS 0.030 0.069
ϕE
1 7.10× 10−8 Unemployment rate, over 55 CPS 0.027 0.018
ϕU
0 1.26× 10−4 LFPR, all ages CPS 0.646 0.754
ϕU
1 5.03× 10−7 LFPR, over 55 CPS 0.389 0.464
γ 0.20 Ratio of monthly NE and RE rate to total monthly job-finding rate CPS 0.202 0.256
f 0.361 Total monthly job-finding rate CPS 0.439 0.457
δ̄ 0.017 Total monthly job-separation rate CPS 0.034 0.041
ηδw −0.156 Q1/Q5 ratio of monthly E to U or N or R rate CPS 2.889 2.322

Note: This table provides a list of internally calibrated parameters. The model frequency is monthly.
SCF refers to the 2019 Survey of Consumer Finances. CPS refers to averages over the 12 months of 2019
for the Current Population Survey. All moments computed for a population over the age of 25, excluding
armed forces, unless otherwise noted.

this age, up to the age of 70. We follow the exact 2019 SS rules in setting362

up this modifier. We also follow current SSA regulations in imposing an363

earnings test for those on or under the FRA. Unemployed or non-participant364

agents receive no penalties.14 A full description of the SS income function,365

as well as the calibration of its parameters can be found in Appendix B.3.366

4.2. Internally calibrated parameters367

We internally calibrate the remaining 13 parameters. The full set of param-368

eters and respective targeted data moments are summarized in Table 4.1.369

The discount factor β is chosen to match the fraction of individuals with370

non-positive net worth in the SCF under the age of 62. The borrowing limit371

is chosen to target the median value of the credit-limit-to-quarterly-labor-372

income ratio, as in Kaplan and Violante (2014) using the SCF. The level373

of home production income h̄0 is chosen to match the retired share.15 This374

14We model this earnings test as a pure tax, in line with the findings from the em-
pirical literature (Gelber et al., 2020). Additionally, we abstract from the personal tax
implications of SS benefits (Jones and Li, 2018).

15The retired share in Table 4.1 is for the population over the age of 25, which is
different than the overall retired share that is shown in Figure 2.1. Our results in Section
2 remain unchanged if our earlier analysis was conducted for those over the age of 25.
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results in a share of home production to GDP of around 13%, which is not375

far from the BEA’s estimates for home production as a share of GDP in 2019376

(21%). Finally, the slope of the UI replacement rate b1 is set to match the377

Q1/Q5 ratio of replacement rates when individuals are ranked based on their378

labor income prior to unemployment, as in Birinci and See (2023), while the379

level b0 is set to match the average replacement rate.380

The level and slope of the employment disutility function are chosen to381

match the overall unemployment rate as well as the unemployment rate for382

those aged 55 and over, respectively. The level and slope of the unemploy-383

ment disutility function are chosen in a similar way, but to match the LFPR384

of the population and those aged 55 and over.16 The parameter γ that af-385

fects non-participants’ job-finding probability is chosen to match the ratio386

of monthly non-participation (including retirement) to employment rate rel-387

ative to the total monthly job-finding rate (out of non-employment). The388

probability of finding a job for the unemployed f is set to target the total389

job-finding rate, which is defined as the sum of the average flow rates from390

unemployment, non-participation, and retirement to employment. The level391

parameter of the job-separation rate δ̄ is chosen to match the monthly flow392

rate out of employment in an analogous manner. Finally, the slope param-393

eter of the job-separation rate ηδw is chosen to target the Q1/Q5 ratio of394

the monthly job-separation rate in the data when employed individuals are395

ranked based on their labor income, as in Birinci and See (2023).396

4.3. Model validation at the stationary state397

The last two columns of Table 4.1 show that the model matches targeted398

data moments reasonably well. We now show that the model also captures399

untargeted data moments in 2019 that are relevant for the economic forces400

that we seek to analyze: the shape of the wealth distribution, and the wealth401

and income distributions of new retirees in the data reported in Section 2.402

Unconditional wealth distribution. Figure 4.1(a) plots deciles relative403

to the median of the wealth distribution in the model’s stationary state vs.404

the SCF and SIPP. To ensure comparability between the model and the data,405

16Since j refers to monthly age and consumption is in units of 2019 dollars, the estimated
slope parameters of disutility functions are small.
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Figure 4.1: Validation of model predictions using microdata at the stationary state

(a) Wealth distribution
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(b) New retirees by wealth
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(c) New retirees by labor income
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Note: Panel (a) presents deciles relative to median of the wealth distribution in the model’s stationary
state vs. 2019 SCF and 2019 SIPP. We exclude households with a ratio of net worth to average annual
income greater than 15 from the data, as the model is not designed to capture very wealthy households.
Panel (b) plots fractions of new retirees across wealth quintiles in the model’s stationary state and in SIPP
2019. Panel (c) repeats the same calculations as in Panel (b) for labor income.

we report wealth deciles relative to median wealth. We also restrict the SCF406

and SIPP samples to households whose net worth to average annual income407

in 2019 is under 15, as the model is not designed to capture the very wealthy,408

in line with our sample used to estimate the asset returns in Equation (4.2).409

We find that the model does a good job of matching the overall shape of the410

wealth distribution, except that it does not fully capture the large wealth411

inequality driven by the very wealthy in the data, as expected.17412

New retirees by wealth and labor income. Since our analysis is fo-413

cused on the drivers of retirement patterns between 2020 and 2023, it is414

important that the model’s stationary state generates the right patterns of415

retirement in 2019 in the data. Panels (b) and (c) of Figure 4.1 plot fractions416

of new retirees across quintiles of the wealth and income distributions in the417

model’s stationary state vs. the 2019 SIPP data. We described how we com-418

puted these moments in the context of Figure 2.2 in the data, and implement419

the same calculations in the model. We find that the model broadly matches420

the patterns in the data. Specifically, the model matches the negative depen-421

dence of retirement decisions on income, as well as the positive relationship422

17We abstract from several mechanisms commonly used to match the right tail of the
wealth distribution: entrepreneurship (Cagetti and De Nardi, 2006), heterogeneous dis-
count factors (Hendricks, 2007), and rare large idiosyncratic shocks to labor productivity
(Castaneda et al., 2003), among others.
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with wealth. These results indicate that the model is able to capture both the423

small wealth effects of labor supply, with those who retire being only slightly424

more likely to be wealthy, and the opportunity cost effects, with those who425

retire being more likely to have lower labor income.426

There are two small discrepancies between the results in the model and427

the data. First, the model overestimates the rise in fractions of new retirees428

in wealth quintiles.18 Second, while the model generates a negative relation-429

ship between retirement decisions and income, it generates a relatively larger430

fraction of new retirees at the top income quintile (20% in the model vs 12%431

in the data). This is driven by our simplifying assumption on the SS income432

function, which is based on the last realization of the stochastic wage com-433

ponent w before retirement. This simplification gives agents the incentive to434

wait until they obtain a high enough w before deciding to retire.435

5. Aggregate dynamics during 2020-2023436

Using the calibrated model, we now ask whether the model can generate the437

observed changes in aggregate labor market moments between 2020 and 2023.438

First, we describe how we measure and map the shocks to the model. Second,439

we present the results of our main experiment, where we feed in all these440

shocks and analyze whether the model generates the empirical changes in441

the retired share, unemployment rate, and employment-to-population ratio.442

As these movements are not targeted by our calibration, the model’s fit in443

terms of these variables serves as yet another element of model validation.444

5.1. Shocks445

Starting from the stationary state, we introduce five shock sequences into446

the model: (i) a shock to the return on savings, which varies by wealth and447

age; (ii) a shock to job-separation rates for the employed, which varies by448

labor income; (iii) a shock to lump-sum transfers, which depends on age and449

total income; (iv) a shock to UI benefits for the unemployed; and (v) a shock450

18Despite the presence of a stronger relationship between the level of wealth and in-
centives to retire in the model relative to data, our decomposition exercise in Section 6.1
shows that increases in asset valuations during 2020-2023 played a small role in explaining
excess retirements.
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Figure 5.1: Time series paths for exogenous shocks

(a) Asset returns shock
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(b) Job-separation rate shock
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(c) Fiscal payments shock
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(d) UI benefits shock
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(e) Mortality rate shock

2020-01
2020-07

2021-01
2021-07

2022-01
2022-07

2023-01
2023-07

2024-01

0

5

10

15

20

25

30

Ch
an

ge
 f

ro
m

 b
as

el
in

e 
(%

)

Age 55: Non-employed
Age 55: Employed
Age 65: Non-employed
Age 65: Employed
Age 75: Non-employed
Age 75: Employed

Note: Panel (a) plots the mean and median paths of the estimated monthly return (annualized) function
rt(a, j). We only plot the mean and median values at each month for expositional purposes. Panel (b)
plots percent changes in the job-separation rate at each month δt(w, j) relative to the stationary state by
quintiles of the labor income distribution. Panel (c) presents shocks to the economic impact payments
Tt(y, j, a) for eligible individuals. Panel (d) plots the shocks to UI benefit amount bt. Panel (e) plots
percent changes in mortality rates πt(j, l) at each month relative to the stationary state by age and
employment status. Shocks in Panels (a) and (b) are smoothed by taking six-month moving averages.

to mortality rates, which varies by age and employment status. The time451

series of these shocks are presented in Figure 5.1. Below, we describe in452

detail how we map each of these impulses from the data to the model. At453

each date, agents treat certain shocks (e.g., job separation and mortality) as454

permanent changes to parameter values, which requires a full solution of the455

problem—substantially increasing the computational burden.456

Asset returns. Elevated asset returns during 2020-2023 may have trig-457

gered wealth effects that led to above-average movements into retirements458

and also retained individuals already in retirement. To capture this channel,459

we estimate Equation (4.2) for each month from January 2020 to December460

2023. Due to significant month-to-month variation in returns, we take six-461

month moving averages of the estimated coefficients and feed to the model462

as exogenous shocks. Figure 5.1(a) plots the mean and median paths of the463
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estimated monthly return (annualized) function: both the mean and median464

increase in the early months of the pandemic, surpassing 20% and 15% in465

2021, respectively. They then fall and become negative in 2022 and early466

2023, but recover to positive levels later in 2023.19467

For implementation, we replace the return function r(a, j) in the budget468

constraint for each agent with positive wealth with rt(a, j). These return469

shocks are unexpected and assumed to be transitory. That is, individuals470

expect the return on savings to be the stationary function in all following471

periods. This is therefore equivalent to a lump-sum windfall that does not472

distort individual savings decisions.20 This reflects the unexpected nature of473

these large movements, and prevents counterfactual changes in consumption474

and savings behavior that could affect labor supply by inducing agents to475

work more and accumulate wealth to take advantage of elevated returns.476

Job-separation rates. The 2020-23 period was marked by a large increase477

in the aggregate job-separation rate. In addition, the COVID-19 episode in-478

duced a much larger increase in job-separation rates of low-income workers,479

while those who were employed at relatively higher-paying jobs experienced480

smaller increases in their job-separation rates. The rise in job separations481

may have negatively impacted labor force participation as unemployed work-482

ers are more likely to flow into non-participation than are employed workers483

(Hobijn and Şahin, 2021). We capture both the magnitude and heterogeneity484

in separations by feeding exogenous paths of job-separation rates that vary485

by quintiles of labor earnings. To this end, using the CPS, we first calculate486

the monthly job-separation rate as the fraction of employed individuals in487

one month who become non-employed in the next. We compute this rate488

separately for each month from 2019 to 2023 and by quintiles of the earnings489

distribution, where individuals are assigned to quintiles based on their current490

labor income.21 We then calculate percent changes in job-separation rates for491

19Appendix C.1 presents heterogeneity in these estimated asset returns by age, showing
that younger individuals experienced wider return fluctuations during 2020-2023.

20The amount of lump-sum income (or loss) is equal to at × rt(at,jt)−r(a,j)
1+r(a,j) . As such,

this experiment preserves distortion of decisions through wealth effects (as it is intended).
21At the onset of the pandemic, the fraction of employed who were temporarily sep-

arated from their job increased substantially. However, most of these workers were later
recalled to their jobs. Because our model does not feature elements to meaningfully differ-
entiate between temporarily unemployed with a recall option from the regular unemployed,
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each month in 2020-23 relative to the average job-separation rate in 2019,492

separately for each quintile of labor earnings. Due to sizable fluctuations493

in monthly rates, we compute six-month moving averages of these changes.494

Additionally, all these shocks becomes negligible after October 2021, and so495

we set them to zero after this date, for tractability.22 Panel (b) of Figure 5.1496

plots the series that we feed to the model as period-by-period shocks to the497

job-separation rate at the stationary state δ(w, j).23 These series reflect both498

the sharp rise in separation rates and the substantial heterogeneity across la-499

bor income quintiles, with lower-quintile workers being more affected and500

experiencing a slower recovery to 2019 levels. We assume that these shocks501

are perceived by the agents to be permanent at each point in time, given the502

uncertainty surrounding the duration of the public health emergency and its503

effects on the labor market.504

Economic impact payments. The COVID-19 episode in the U.S. trig-505

gered an unprecedented fiscal response that involved large scale support for506

households with relatively lower levels of income (Faria-e-Castro, 2021a). A507

large part of fiscal support programs to households was economic impact508

payments, which consisted of three rounds of lump-sum transfers to eligible509

households. We model these payments as increases in government transfers510

T (y, j, a) in our model. We map the dollar value and timing of the transfers511

directly to the model. For each of the three rounds of transfers, households512

were ineligible if their adjusted gross income (AGI) exceeded $80,000. 2019513

IRS data on the distribution of AGI for filed returns establishes that this514

value is close to the 80th percentile of the AGI distribution. Thus, we set the515

eligibility cutoff for transfers as the 80th percentile of the stationary state516

AGI distribution. We define AGI in the model as total income y.517

The first round of transfers was associated with the Coronavirus Aid,518

Relief, and Economic Security (CARES) Act and took place in March 2020,519

when calculating the monthly job-separation rates in the data, we do not include tempo-
rary job separations.

22Appendix C.2 presents the historical time series of these shocks and shows that these
shocks in the pre-2020 period were typically stable and that they mostly return to their
pre-2020 levels by the end of 2021.

23For example, the job-separation rate of those at the bottom two quintiles increased
in mid 2020 by over 60% relative to their respective stationary state levels, while the
separation rate of those at the top quintile increased at that time by around 30%.
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consisting of $1,200 per person plus $500 per child under the age of 17. The520

second round of transfers was triggered by the Tax Relief Act of 2020 and took521

place in December 2020, consisting of $600 per person plus $600 per child522

under the age of 17. The American Rescue Plan Act of 2021 initiated a third523

round of transfers in March 2021, which consisted of $1,400 per person plus524

$1,400 per dependent. Thus, the presence of dependents could considerably525

increase the effective transfers earned by households.526

To map the size of the effective transfers to the model, we explicitly527

account for the fact that household structure and the number of dependents528

may depend on the age of the household head. We use data from the 2019529

Annual Social and Economic Supplement (ASEC) of the CPS, which provides530

the number of individuals under 18 by the head of household’s age. This531

allows us to impute a transfer modifier that depends on the age of the head.532

The procedure is explained in detail in Appendix C.3. The effective transfer533

amounts over time, as a function of age, is plotted in Panel (c). Since these534

transfers were plausibly perceived to be one-time events, we assume that535

these shocks are unexpected and expected to last for a single period.536

UI benefits. The other major component of household income support537

during the COVID-19 episode was the expansion of UI benefits. These extra538

benefits were $600 weekly (on top of pre-pandemic benefits) between March539

2020 and June 2020, and then $300 weekly from July 2020 to about June540

2021.24 We map these extra benefits to the model by assuming four weeks per541

month. The path of UI benefits that we input in the model is plotted in Panel542

(d). Just as in the data, these benefits are modeled as a lump-sum transfer543

for the unemployed. That is, unemployed individuals receive their regular544

UI benefits, calculated with regular replacement rates, and these additional545

UI benefits in months when they are provided by the government. As with546

economic impact payments, we assume that agents perceive these shocks to547

be temporary: they are unexpected and expected to last only for a single548

period.549

Mortality rates. The last shock we consider is a change in mortality rates550

π(j, ℓ). The goal is not to exactly match actual mortality patterns, but rather551

24In practice, different states phased out benefits at different points around that time,
and we choose to end them in June 2021 for simplicity.
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to shock agents’ perceived mortality risk during 2020. This is potentially an552

important channel given that perceived and realized increases in mortality553

operate as changes in the discount factor that may affect participation deci-554

sions especially for older agents. Additionally, different from the stationary555

state of the model, we now allow mortality rates to depend on labor force556

status, reflecting the potential increase in COVID-19 transmission rates from557

employment activities that involve physical contact.558

To model the rise in mortality rates, we assume that at the beginning559

of 2020, agents perceive their mortality rate to have risen to the levels em-560

pirically observed in the SSA life tables. At the beginning of 2021, those561

rates change again, and they return to their baseline levels in 2022. Similar562

to the labor market shocks, and in order to capture the uncertainty about563

the duration of the public health emergency, we assume that agents perceive564

each of these changes to be permanent. We assume an additional increase in565

mortality for employed agents. To calibrate this increase, we combine esti-566

mates from Eichenbaum et al. (2021) with 2020 Census data: the probability567

of death for an employed worker over the age of 50 increased by 2.2% more568

relative to a non-employed, while the probability of death for an employed569

below 50 increased by 0.08% more relative to a non-employed. We describe570

how we obtain these numbers in Appendix C.4. The percent changes in571

mortality rates in each month relative to the stationary state by age and572

employment status are plotted in Panel (e).573

5.2. Aggregate labor market moments: model vs data574

Next, we present the results of our experiment, in which we introduce all575

shocks simultaneously starting from the model’s stationary state and com-576

pare the resulting aggregate labor market dynamics along the transition to577

their empirical counterparts from 2020 to 2023. Figure 5.2 plots the data and578

the model paths for the aggregate retired share (Panel (a)), unemployment579

rate (Panel (b)), and employment-to-population ratio (Panel (c)).25580

For the retired share in the data, we use the same definition as in Figure581

2.1: the deviation of the actual fraction of retirees in the population in the582

25In this exercise, agents who die are replaced by new 25-year olds and thus the total
population is kept constant. We have experimented with alternative assumptions (i.e., not
replacing agents who die) and found that this matters very little quantitatively.
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Figure 5.2: Changes in aggregate labor market moments: Model vs data
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(b) Unemployment rate
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(c) Employment/population
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Note: This figure plots the paths of the aggregate retired share (i.e., the fraction of retirees in the
population) (Panel (a)), unemployment rate (Panel (b)), and employment-to-population ratio (Panel (c))
in the data and the model. We take six-month moving averages both in the data and in the model, and
plot the percentage point deviation from the 2019 average in the data and stationary state of the model.
Since the model is not designed to capture the sizable rise in temporary layoffs during COVID-19, our
data benchmark for the unemployment rate is net of temporary unemployment, as classified in the CPS.

CPS relative to the trend. We take six-month moving averages both in the583

data and in the model, and plot the percentage-point (pp) deviation from584

the 2019 average in the data and stationary state of the model. The model585

matches well both the magnitude and persistence of the increase in the retired586

share: it rises in 2020, peaking at around 0.7 pp in 2021, and slowly declining587

thereafter.588

Similarly, for both the unemployment rate and the employment-to-population589

ratio, we take six-month moving averages and plot the pp deviations from590

both the data average in 2019 or the model’s stationary state. Starting591

with the unemployment rate, we note that since our model is not designed592

to capture the sizable increase in temporary layoffs during the COVID-19593

episode, our data benchmark is the unemployment rate net of temporary un-594

employment, as classified in the CPS. We find that the model captures well595

both the magnitude and dynamics of the increase in the unemployment rate.596

Finally, the model slightly underestimates the decline in the employment-to-597

population ratio by about 0.7 pp, but matches its dynamics well: the initial598

drop and the subsequent slow recovery. In particular, both model and data599

are aligned with their prediction that the employment-to-population ratio is600

around 0.5 pp lower at the end of 2023 relative to the 2019 level. Taken to-601

gether, these results suggest that the model does a very good job in capturing602

untargeted aggregate dynamics between 2020 and 2023.603
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6. Decomposing the retirement boom604

Having shown that the model captures well the size and persistence of move-605

ments in key aggregate labor market moments, we now undertake a decom-606

position exercise where we quantify the importance of each of the five shocks607

in driving these movements during this episode.608

6.1. Decomposing the increase in retired share609

Panels (a) and (b) of Figure 6.1 offer two alternative decompositions that610

shed light in the importance of each exogenous force at each point in time611

on the increase in the retired share. Panel (a) plots the baseline (with all612

shocks included) and removes one shock at a time. Panel (b) adds only one613

shock at a time, starting from the stationary state (without any shock).614

The results show that job-separation shocks, as shown by green circle615

lines, are the most important driver of the rise in the retired share in 2020.616

However, these shocks alone cannot explain the magnitude of the rise. Eco-617

nomic impact payments (purple square line) are important to get the mag-618

nitude of the rise right, and help explain the persistence of the retired share619

as shown in Panel (b). Asset returns and UI benefits contributed slightly to620

the increase in retirements. The expansion of UI creates an income effect on621

labor supply that leads unemployed workers to retire, but this effect is small622

as transitions between unemployment and retirement are infrequent. Albeit623

small in magnitude, UI expansion was relatively more important early on,624

2020-21, while asset returns were more important at a later stage, 2022-23.625

The mortality shock, represented by the light-gold line, counters the ef-626

fects of these shocks in the aggregate and helps the model get the magnitudes627

right. The negative effect of the mortality shock on the retired share is me-628

chanical: mortality risk rises by more for older people, who therefore die629

in greater numbers than younger people. Since a significant share of these630

agents are retired, this channel pushes the retired share down. Note that,631

as previously explained, we do explicitly account for greater risk of mortal-632

ity from employment, which counteracts this mechanical effect of mortality633

shocks on retirement by inducing older people to retire. We find, however,634

that the inequality in mortality rates across ages is the dominating channel.635

Ultimately, the model requires all these shocks to adequately capture the636

retirement dynamics.637

Panel A of Table 6.1 offers a formal decomposition to quantify the contri-638

26



Figure 6.1: Decomposing movements in the retired share and unemployment rate

(a) Retired share: removing one shock
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(b) Retired share: adding one shock
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(c) Unemployment rate: removing one shock
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(d) Unemployment rate: adding one shock
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Note: Panels (a) and (c) plot the baseline (with all shocks included) and remove one shock at a time.
Panels (b) and (d) add only one shock at a time, starting from the stationary state (without any shocks).
r(j, a), δ(w, j), b, T (y, j, a), and π(ℓ, j) refer to shocks to returns, separations, UI, transfers, and mortality.

bution of all five shocks on the rise in the retired share for each year between639

2020 and 2023, where we compute the average individual percent contribu-640

tion of each shock for these years (that is, we compare the lines in Panel641

(b) to the blue line in Panel (a)). The table quantifies the previous discus-642

sions: 75% of the excess rise in the retired share in 2020 is accounted for643

by changes in job-separation rates. This share remains elevated throughout.644

Economic impact payments explain 40% in 2020-21, and become more im-645

portant in 2022-23. Changes in asset returns play a small role in 2020-21,646

and account for a fifth of the share in 2022-23. Note that the sum of the647

contribution of the shocks adds up to more than 100%, which reflects not648

only interactions between the different mechanisms but also the importance649

of the offsetting effects of mortality shocks in order to adequately match the650
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Table 6.1: Decomposition of changes in the retired share and unemployment rate

Asset returns Job separations UI benefits Transfers Mortality Model (pp.) Data (pp.)

A. Retired share

2020 1.0% 75.0% 11.7% 40.0% -24.8% 0.25 0.28
2021 7.1% 74.4% 8.5% 42.4% -30.3% 0.66 0.60
2022 17.4% 67.4% 9.5% 64.3% -60.2% 0.46 0.34
2023 20.0% 78.8% 14.3% 80.7% -93.2% 0.29 0.18

B. Unemployment rate

2020 -0.51% 109.00% -9.74% -7.18% 7.61% 0.68 0.44
2021 -8.35% 97.97% 15.69% -5.69% 15.96% 0.85 1.43
2022 -1.57% 17.32% 33.36% 5.59% 44.28% 0.33 0.12
2023 22.82% 19.20% 17.86% 3.01% 44.99% 0.19 -0.03

Note: This table presents the average percentage change in the retired share (Panel A) and unemployment
rate (Panel B) that is explained by feeding one shock (presented in columns) at a time, separately for each
year. Due to interactions and averaging, values may not sum up to 100%. The last two columns present
the average percentage-point (pp) changes in each variable during each year in the model and the data.

retirement dynamics along the transition.26 In sum, job separations were a651

major factor throughout the period under analysis, while transfers became652

more significant in explaining the dynamics of excess retirements later on.653

The importance of job separations and fiscal transfers in explaining excess654

retirements suggests that the rise in retirements may have been driven by655

income-poor workers, who faced relatively worse labor market prospects and656

were eligible and more sensitive to income effects from transfers. The positive657

effects of asset returns also warrant an investigation on the role of wealth.658

We study the composition of new retirees in more detail in Section 6.3.659

6.2. Decomposing the increase in unemployment rate660

Panels (c) and (d) of Figure 6.1 and Panel B of Table 6.1 repeat the same661

exercise for the unemployment rate. There are four key takeaways. First, the662

unemployment rate dynamics are almost completely explained by separation663

shocks. Second, mortality shocks play somewhat of a role in explaining the664

rise in unemployment, again due to larger mortality risk among older agents,665

26A part of the increase in returns is driven by house price appreciation. One potential
concern is that housing is a less liquid asset and thus capital gains should generate weaker
wealth effects on labor supply. We analyze this point in Appendix C.5.
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who tend to be employed or retired. Third, UI benefits are moderately666

important, especially in 2022. Fourth, asset returns and transfers play a667

relatively small role in driving the unemployment rate.668

The last two columns of Table 6.1 present the average percentage-point669

(pp) changes in each variable during each year in the model and the data. We670

find that the model captures the increases in both the retired share and the671

unemployment rate well for each year, consistent with our results in Figure672

5.2.673

6.3. Model validation along the transition674

We have shown that the model broadly matches the behavior of aggregate675

variables of interest along the transition. Does it also align well with mi-676

crodata that are relevant for the mechanisms of interest? Comparing the677

outcomes from the model along the transition against the microdata also678

reinforces the credibility of our quantitative decomposition on the sources679

of changes in aggregate variables. In this section, we show that the model680

delivers three key predictions that are broadly in line with the microdata.681

In particular, the model matches changes in the wealth distribution and682

the distributions of new retirees by both wealth and income quintiles during683

2020-2021 relative to 2019. Moreover, Appendix C.6 provides two additional684

results by comparing changes in monthly flow rates into and out of retire-685

ment, as well as average wealth over the transition. We show that the model’s686

outcomes on these moments closely align with the empirical observations.687

Changes in the distribution of net worth. The model captures the688

key movements in the wealth distribution. Table 6.2 presents the evolution689

of percentiles of the distribution relative to median in 2020-21 from the SIPP690

data (Panel A) and the model (Panel B). In the data, percentiles below the691

median increase relative to the median over time while percentiles above the692

median fall, suggesting a compression of the wealth distribution over time.693

The model captures the exact same pattern, with the bottom percentiles694

rising relative to the median and the top percentiles falling. Specifically, the695

magnitudes of the decline between 2021 and 2019 in percentiles above the696

median are almost identical in the model and the data, but the model slightly697

overestimates the magnitudes of the rise in percentiles below the median.698

Overall, the model reproduces the overall dynamics of the wealth distri-699

bution between 2019 and 2021, which involved an increase in the average net700
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Table 6.2: Wealth distribution over time: Data vs model

Relative to median p10 p20 p30 p40 p50 p60 p70 p80 p90

A. Data

2019 -0.08 0.03 0.18 0.52 1.00 1.64 2.47 3.65 5.51
2020 -0.04 0.04 0.21 0.53 1.00 1.58 2.34 3.37 4.91
2021 -0.02 0.05 0.23 0.55 1.00 1.54 2.23 3.12 4.51

B. Model

2019 -0.11 0.06 0.33 0.64 1.00 1.41 1.89 2.46 3.11
2020 0.01 0.23 0.48 0.73 1.00 1.32 1.70 2.15 2.64
2021 0.06 0.30 0.55 0.77 1.00 1.26 1.56 1.90 2.14

Note: This table presents the value of deciles relative to the median of the wealth distribution in the SIPP
data (Panel A) and the model (Panel B), separately for 2019, 2020, and 2021.

worth (shown in Appendix C.6) and a reduction of inequality in net worth.701

The fact that the model matches these empirical patterns is important if we702

are to give wealth effects a chance to explain retirement dynamics during this703

period.704

Changes in new retirees by wealth and labor income. Panels (a)-705

(b) and (c)-(d) of Figure 6.2 compare changes in fractions of new retirees706

in the data and model across the wealth and labor income distributions,707

respectively. Calculations of these moments follow the same steps as before.708

As discussed in Section 2, Panel (a) reveals that the post-COVID-19 episode709

is not characterized by a rise in the fraction of new retirees with high levels of710

wealth. If anything, retirements during 2020-2021 were slightly tilted toward711

people with low levels of wealth, and there is slightly less heterogeneity in712

fractions of new retirees across wealth quintiles in the 2020-2021 episode713

when compared with the same distribution in 2019. Panel (b) shows that714

the model reproduces the same patterns: retirements during 2020-2021 were715

not tilted toward wealthy individuals and changes in fractions of new retirees716

by wealth quintiles in 2020-2021 relative to 2019 were quite limited.717

Panels (c) and (d) show that, in the data and the model, fractions of new718

retirees by labor income quintiles also change little over time, with the ma-719

jority of new retirees continuing to come from the lower quintiles. This makes720

sense in light of our decomposition, which reveals that most new retirements721

were due to a deterioration of labor market conditions with increased job sep-722
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Figure 6.2: Validation of model predictions using microdata along the transition

(a) New retirees by wealth: Data
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(b) New retirees by wealth: Model
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(c) New retirees by income: Data

Q1 Q2 Q3 Q4 Q5
Income quintiles

0

5

10

15

20

25

30

35

40

Pe
rc

en
t

(d) New retirees by income: Model
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Note: Panels (a) and (b) plot fractions of new retirees by wealth quintiles, separately for those who retire
in 2019 and those who retire between 2020 and 2021 using data from the SIPP and from the model,
respectively. Panels (c) and (d) repeat the same calculations for labor income.

arations especially for low-income workers and economic impact payments to723

which low-income individuals are more sensitive.724

In summary, we show that the model not only matches the rise in the725

retired share during this episode but also generates fractions of new retirees726

by wealth and income groups as well as monthly flow rates into and out of727

retirement (shown in Appendix C.6) that are in line with the microdata.728

7. Conclusion729

In this paper, we develop an incomplete markets, OLG model combined with730

a frictional labor market to understand the rise in retirements experienced731

in the U.S. after 2019. We analyze the ability of five different channels to732
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explain excess retirements during 2020-2023: elevated asset returns, increased733

job separations, provision of economic impact payments, expansion of UI734

benefits, and increased mortality risk. In a quantitative exercise that maps735

these shocks to the calibrated model, we show that the model is able to match736

the magnitude and persistence of excess retirements when all these forces are737

active. In a decomposition exercise, we show that the fluctuations in job738

separations and economic impact payments are the main drivers behind the739

excess retirements in 2020-23. On the other hand, increased mortality risk740

during COVID-19 mitigated the effects of the other forces. Fluctuations in741

asset returns and changes in UI benefits also contributed to the dynamics of742

excess retirements, but to a lesser extent.743

The fact that increased job loss risk and economic impact payments con-744

ditional on income explain the bulk of excess retirements suggests that these745

were concentrated in lower-income individuals. We show that this prediction746

of the model is corroborated in the microdata: fractions of new retirees by747

wealth and income groups changed little during this period, and most new748

retirees came from lower income quintiles.749
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Supplementary Material for817

“Dissecting the Great Retirement818

Boom”819

Appendix A. Data820

In this Appendix, we provide details on our empirical analysis to supplement821

the discussions in the main text and provide additional results from the data.822

Appendix A.1. CPS823

Our CPS sample consists of individuals aged 16 and over who are not in the824

armed forces. In our baseline analysis, we define retirees based on whether825

they identify themselves as retired, EMPSTAT equal to 36. We define the826

retired share as the weighted sum of all retirees divided by the weighted827

sum of all persons in our sample. We seasonally adjust the retired share by828

regressing it on month dummies.829

We have also experimented with alternative definitions of retirement. Fig-830

ures Appendix A.1 and Appendix A.2 replicate Figure 2.1 for two such831

alternative definitions. Figure Appendix A.1 considers a stricter definition832

where a person is considered retired if EMPSTAT is equal to 36 and age is at833

least 62. This is a strict subset of our baseline definition as it only considers834

people who identify themselves as retired and are old enough to be eligi-835

ble for Social Security benefits. Figure Appendix A.2, on the other hand,836

considers a slightly broader definition of retirement: EMPSTAT is equal to or837

greater than 30 and age is at least 62. This means that we define retirees838

as non-participants who are at least 62 years old. Figures Appendix A.1839

and Appendix A.2 show that our measure of the retired share (i.e., excess840

retirement share) is robust to alternative definitions of retirement.841
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Figure Appendix A.1: Alternative retirement definition: Retirees over 62

(a) Retired share and linear trend
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Note: Panel (a) plots the retired share in the U.S., calculated as the fraction of individuals who report
to be retired in the Current Population Survey (CPS) and are at least 62 years old among all individuals
(excluding those in armed forces) aged 16 and over. Linear trend is estimated between June 2008 and
January 2020. Panel (b) plots deviations from trend by taking 6-month moving averages.

Appendix A.2. SIPP842

We use the SIPP data for three purposes. First, we calculate the wealth843

distribution for each year between 2019 and 2021. These results are presented844

in Panel (a) of Figure 4.1 and in Table 6.2. Second, we calculate fractions of845

new retirees by wealth and labor income quintiles, separately for those who846

retire in 2019 and those who retire between 2020 and 2021. These results are847

presented in Figure 2.2. Finally, we estimate the parameters of the lifecycle848

labor income process using the SIPP data, as discussed in Section 4.1. In849

this Appendix, we provide details on calculations of the first two moments.850

Appendix B.1 provides details on the last one.851

For these calculations, we use SIPP 2020, 2021, and 2022 panels covering852

data from the start of 2019 to the end of 2021.27 Our sample consists of all853

individuals (excluding those in armed forces) aged 25 and over.854

Wealth distribution. The SIPP provides values of assets across detailed855

asset categories at individual and household levels for each year. We obtain856

the value of total net worth for each household as follows.857

We first calculate the gross liquid wealth for each household. This is858

27Later panels of SIPP are not yet available as of this writing.
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Figure Appendix A.2: Alternative retirement definition: Non-participants over 62

(a) Retired share and linear trend
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Note: Panel (a) plots the retired share in the U.S., calculated as the fraction of individuals who report to
be out of the labor force in the Current Population Survey (CPS) and are at least 62 years old among all
individuals (excluding those in armed forces) aged 16 and over. Linear trend is estimated between June
2008 and January 2020. Panel (b) plots deviations from trend by taking 6-month moving averages.

given by the household-level sum of (i) value of assets held at financial in-859

stitutions THVAL BANK, (ii) value of other interest-earning assets THVAL BOND,860

(iii) value of stocks and mutual funds THVAL STMF, and (iv) value of other861

assets THVAL OTH. Next, we obtain the net liquid wealth as the gross liquid862

wealth minus the household-level sum of value of amount owed on all unse-863

cured debt THDEBT USEC. Our measure of household-level net worth is then864

given by the net liquid wealth plus the sum of household-level (i) value of865

retirement accounts THVAL RET, (ii) equity in primary residence THEQ HOME,866

(iii) equity in rental properties THEQ RENT, (iv) equity in other real estate867

THEQ RE, and (v) equity in vehicles THEQ VEH.868

We calculate household-level net worth for all households, separately us-869

ing the SIPP 2019, 2020, and 2021 data. We further restrict our sample to870

households whose net worth to average annual income in 2019 is under 15,871

as the model is not designed to capture the very wealthy, in line with our872

sample used to estimate the asset returns in Equation (4.2). Next, we di-873

vide the household-level net worth by two for married households to obtain874

individual-level net worth. Then, for each year, we calculate the average and875

various percentiles of the net worth distribution using weights.876

Fraction of new retirees by wealth quintiles. The SIPP also provides877

individual-level information on weekly employment status. For each of the878
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five possible weeks in a month, this information is recorded in RWKESR1 to879

RWKESR5. We use this information to classify individuals into one of the three880

employment statuses each month as follows. If an individual reports having881

no job or business and that she is not looking for work and not on layoff882

in at least one week of a given month, we classify her as non-participant883

(i.e., out of labor force) in that month. That is, RWKESRj = 5 for at least one884

j ∈ {1, 2, 3, 4, 5}. If she reports having a job or business and either working or885

absent without pay (but not on layoff) in all weeks of that month, we classify886

her as employed in that month. That is, RWKESRj ≤ 2∀j ∈ {1, 2, 3, 4, 5}. For887

all other cases with any other potential combination of employment statuses888

across weeks, we classify individuals as unemployed (i.e., those who report889

to have a job or business but on layoff or those who do not have a job or890

business and are looking for work).891

Given this information on monthly employment status, we identify new892

retirees in 2019 as those who report as employed or unemployed (i.e., in the893

labor force) in a month in 2019 and report as retired for the first time in894

the next month in 2019.28 Then, we assign each new retiree in 2019 into895

quintiles of the wealth distribution in 2019 (as calculated above) for those896

who are employed and aged between 62 and 72 using their own level of net897

worth. These steps allow us to calculate the fraction of new retirees in 2019 at898

each quintile among all new retirees in 2019. We repeat the same procedure899

to calculate the same moments for new retirees between 2020 and 2021.900

Fraction of new retirees by labor income quintiles. We also obtain901

the fraction of new retirees by labor income quintiles following the same902

procedure as above except that we use total labor income (instead of net903

worth) to classify individuals into quintiles of the labor income distribution.904

We measure labor income as the sum of (i) total weekly wage or salary905

earnings across the weeks of the month from the first job and the second job906

and (ii) profits or losses a business made after correcting for any salary or907

wages that may have been paid to the owner.29908

28The EEVERET variable in SIPP provides information on whether an individual is ever
retired from a job or business. We use this variable to identify first time retirees.

29For the first job, weekly earnings are given by TJB1 WKSUM1 to TJB1 WKSUM5. For the
second job, they are given by TJB2 WKSUM1 to TJB2 WKSUM5. Business profits or losses from
the first and the second business are provided by TJB1 PRFTB and TJB2 PRFTB, respectively.
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Appendix A.3. SCF909

We use the 2019 wave of the SCF, downloaded from the website of the Fed-910

eral Reserve Board, for two purposes. First, we compute the average net911

worth. Our definition of total assets covers the following variables: equity912

measures total direct and indirect holdings of stocks; housing is measured as913

houses+oresre+nnresre, which is the value of the primary residence plus914

other residential property and net equity in non-residential real estate; and915

government bond holdings are computed as notxbnd+mortbnd+govtbnd+916

savbnd+ tfbmutf+ gbmutf, which is tax exempt bonds plus mortgage-back917

bonds plus U.S. government and agency bonds plus savings bonds plus tax-918

free and government bond mutual funds. Corporate bond exposure is equal919

to obnd+obmutf, which is corporate and foreign bonds plus other bond mu-920

tual funds. Private business interests are measured as bus. The difference921

between asset and these assets is classified as other assets. Finally, debt is922

measured directly as debt. Net worth is measured as asset−debt. Second,923

we estimate how returns on savings change based on the level of net worth924

and age, where we use age as the age of the head of household. Similar to925

our sample in SIPP, we restrict our SCF sample to households whose net926

worth to average annual income in 2019 is under 15.927

Appendix B. Calibration928

This Appendix provides more details on some aspects of the calibration: the929

estimation of life-cycle labor income process, the calculation of asset returns930

in the data, the procedure to impute returns to the SCF net worth data, and931

a detailed explanation of the SS income function.932

Appendix B.1. Labor income process933

We estimate the parameters of the life-cycle labor income precess given in
Equation (3.1) by closely following French (2005) and Blandin et al. (2023).
To do so, we use the SIPP 2004 panel, covering a period of stable non-
recessionary labor markets in the U.S. We focus on monthly labor earnings
of a sample of individuals whose real wage is above 1/3 of the federal mini-
mum wage at the time, whose usual weekly hours worked is at least 20, and
who are at least 25 years old. Using this sample, we estimate a regression of
the logarithm of monthly labor earnings (adjusted by the CPI) on age and
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age squared with individual-fixed effects and weights. This regression yields
our estimates for ψ0, ψ1, and ψ2. Then, using the predicted and the ob-
served values of the logarithm of monthly labor earnings, we obtain a panel
of residuals for labor earnings {ŵi,j}i,j. Next, under the same stochastic pro-
cess of labor earnings residuals as in Blandin et al. (2023), we obtain the
autocorrelation of the stochastic wage component ρw as follows:

ρw =
cov(ŵi,j, ŵi,j+3)

cov(ŵi,j, ŵi,j+2)
.

Given ρw, we calculate the standard deviation of the innovations σϵ as follows:

σϵ =

√
cov(ŵi,j, ŵi,j+2)(1− ρ2w)

ρ2w
.

Finally, the standard deviation of initial wage draws σw0 is simply the stan-934

dard deviation of the residuals for those who are 25 years old.935

Appendix B.2. Asset returns and SCF imputation936

We use data on realized asset returns for various asset classes between 2020937

and 2023 in order to impute returns on net worth for households in the 2019938

SCF data. We explicitly consider returns on the following asset classes:939

stocks, private businesses, real estate, corporate bonds, and government940

bonds. All other asset classes are assumed to have zero real returns dur-941

ing this period.942

All monthly series for asset returns are taken from FRED, from where we943

report the mnemonics. For stocks and private businesses, we use the S&P 500944

(SP500); for housing, we use the S&P CoreLogic Case-Shiller U.S. National945

Home Price Index (CSUSHPISA); for corporate bonds, the ICE BofA US Cor-946

porate Index (BAMLCC0A0CMTRIV); and for government bonds, we construct a947

return index based on the 10-year Treasury rate (DGS10). Finally, we deflate948

all indices using the CPI (CPIAUCSL) and normalize them to one in December949

2019. The cumulative return series are shown in Figure Appendix B.1.950

We now provide details on how we impute returns in the SCF, which are
used in Equation (4.2). The net worth for household i at the beginning of
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Figure Appendix B.1: Cumulative real returns on selected asset classes
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Note: This figure provides cumulative real returns on selected asset classes relative to 2019. We assume
that the return on private businesses is the same as for stocks, proxied by the S&P 500.

2019 is given by

NWi,2019m1 =
∑
k∈K

Ak
i −Bi,

where Ak
i is the dollar value of assets of type k and Bi is debt owed by951

the household in dollars. The asset classes k that we consider are the ones952

described above: stocks and private businesses, real estate, corporate bonds,953

government bonds, and other assets. We proxy for Rk
τ using the publicly954

available return data described above. Then, given data on realized returns955

for each of these returns over some period τ , we estimate the net worth over956

this period as follows:957

NWi,τ =
∑
k∈K

Rk
τA

k
i −Bi.

This procedure allows us to compute the net return on net worth over the958

same period as follows:959

rNW
i,τ =

NWi,τ

NWi,2019m1

− 1.

We note that this imputation procedure assumes that households are per-960

fectly diversified within each asset class and the composition of asset portfo-961
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lios in the 2019 SCF remains constant.962

Appendix B.3. SS income function963

As in French (2005), we approximate the current SSA formula for SS benefits964

using a truncated linear function. SS benefits are computed as a product of965

two variables: the Primary Insurance Amount (PIA), which is a concave966

function of past earnings, and an adjustment factor that is based on the967

distance of one’s retirement age from the Full Retirement Age (FRA, also968

known as the Normal Retirement Age), i.e., the age at which a person can969

retire and claim full benefits. The PIA depends on the calendar year, while970

the FRA depends on a person’s birth year.971

PIA. The main input to the computation of PIA is the average indexed972

monthly earnings (AIME). The AIME is calculated as the minimum between973

social security maximum taxable income ȳmax and an average of a worker’s974

35-year highest indexed monthly labor earnings. We proxy for this average975

by taking the product between the last observation of the stochastic wage976

component w before retirement and the average of the lifecycle profile ψ̄.30977

Thus, the relevant measure of earnings for someone who decides to retire is978

the AIME, which is given by979

AIME(w) = min{ȳmax, w × ψ̄}.

Monthly social security maximum taxable income was ȳmax = $11, 075 in
2019. The PIA is equal to 90% of AIME up to a first bend point; plus 32%
of AIME between the first point and a second bend point; plus 15% of AIME
above the second bend point. Since the model steady state is calibrated to
2019, we use the 2019 bend points to calibrate the SS income function: $960
and $5,785, respectively. We use them to the model as parameters ȳ1 = $960
and ȳ2 = $5, 785, respectively. Thus, the PIA formula in the model is:

PIA(w) = 0.9×min{ȳ1, AIME(w)}+ 0.32×max{0,min{ȳ2, AIME(w)} − ȳ1}
+0.15×max{0, AIME(w)− ȳ2}.

30If the worker has worked less than 35 years, the SS formula assigns zeros to the
non-work years. We abstract from keeping track of the worker’s 35-year highest indexed
monthly labor earnings for computational simplicity.
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FRA modifier. The FRA depends on a person’s birth cohort. To keep the980

analysis tractable, we calibrate the FRA modifier to that of someone born981

between the years of 1943 and 1954, which is likely to represent the majority982

of normal-age retirees for the period we are focusing on. For someone born983

on these dates, the FRA is 66: this is the age at which someone can retire984

and earn 100% of the benefits they are entitled to. This person can retire985

and start receiving benefits at any point after they turn 62, but the benefits986

will be scaled down by a penalty that is a function of the number of months987

between the retirement date and the date at which they reach 66. Similarly,988

this person can postpone retirement and increase their benefits by a factor989

that is a function of the same distance and capped at the age of 70. The SSA990

publishes formulas for these penalties and bonuses as a function of birth year991

and distance from the FRA. For early retirement, the penalty is given by992

penalty =

{
5
9
× 0.01× 36 + 5

12
× 0.01× (t− 36) if t > 36

5
9
× 0.01× t if 0 ≤ t ≤ 36,

(Appendix B.1)
where t is the distance, in months, from the age of retirement to the FRA.993

The premium for delayed retirement is equal to 8%/12 per month past the994

FRA, and capped when the retiree reaches the age of 70.995

In the model, we write the FRA modifier as:

τFRA(k) =



0 if age(k) < 62

−1.625929 + 0.005331× k if age(k) ∈ [62, 66)

1 if age(k) = 66

1 + (0.08/12)× (k − 66× 12) if age(k) ∈ (66, 70)

1 + (0.08/12)× (70× 12− 66× 12) if age(k) ≥ 70,

where age of retirement k is measured in months, and the formula for those996

aged between 62 and 66 is obtained by approximating the early retirement997

penalty in Equation (Appendix B.1) using a linear regression.998

Benefit for non-employed. For agents who do not work, the SS benefit999

is then equal to the product of the PIA and the FRA modifier:1000

ȳSS(w, j, k, ℓ) = PIA(w)× τFRA(k), ℓ = U,N.
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Work penalty. As in the data, people may receive social security bene-
fits while working, but these benefits may be reduced. In particular, bene-
fits are reduced for people earning above a certain limit, before or on their
FRA (which is 66 in our model). These annual income limits are known as
the Earnings Test Annual Exempt Amount and were equal to $17,640 and
$46,920 in 2019, respectively. For someone under the FRA, the SS benefit
is reduced by $1 for every $2 earned above the limit. For individuals who
will reach their FRA in the same calendar year, the SS benefit is reduced by
$1 for every $3 earned above the limit. While in reality this is defined at a
monthly frequency, we assume that people at the NRA face the test, i.e., all
those aged 66. We map these limits to the model as ȳa = $17, 640/12 and
ȳb = $46, 920/12. For someone aged j, with the current wage w, the effective
SS benefit is then computed as

ȳSS(w, j, k, E) = ȳSS(w, j, k,N)− I[j < 66]× 0.5×max{w × ψ(j)− ȳa, 0}
−I[j = 66]× 0.33×max{w × ψ(j)− ȳb, 0}.

In reality, the earnings test is not a pure tax: it involves withholding benefits1001

that are credited in the future in an actuarially fair manner (called “benefit1002

enhancement”). We model it as a tax for two reasons. First, the empirical1003

literature has found that people do react to the earnings test as if it were1004

a tax, and that there is bunching at the earnings test kinks. Gelber et al.1005

(2020) show this, and offer several potential explanations for why this may1006

be the case: individuals may expect their life-span to be shorter than aver-1007

age, meaning that they will not full enjoy the offsetting credits; individuals1008

may be liquidity constrained or discount faster than average; finally, some1009

individuals may not understand the benefit enhancement system. Second,1010

the withholding and crediting system is cumbersome to model and would1011

significantly complicate the model.1012

Note also that regulations do not count UI benefits as earnings. Finally,1013

we abstract from taxation issues related to SS benefits (Jones and Li, 2018).1014

Appendix C. Quantitative results1015

In this Appendix, we provide details and present additional results related to1016

the estimation of shocks and the main findings presented in Sections 5 and1017

6.1018
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Figure Appendix C.1: Time series paths for median returns by age
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2020-01
2020-07

2021-01
2021-07

2022-01
2022-07

2023-01
2023-07

2024-01

10

5

0

5

10

15

20

25

M
on

th
ly

 r
et

ur
n,

 a
nn

ua
liz

ed
 (

%)

Age: 30
Age: 35
Age: 40
Age: 45
Age: 50

(b) Old agents
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Note: This figure plots median imputed returns for agents of different ages, computed from the SCF.

Appendix C.1. Returns by age1019

In Section 5.1, we present estimated mean and median of asset return shocks.1020

Here, in Figure Appendix C.1, we provide median returns for agents of dif-1021

ferent ages, with Panel (a) focusing on younger agents (30 to 50) and Panel1022

(b) focusing on older agents (55 to 75). We show that there is large hetero-1023

geneity by age and that younger agents tend to experience higher returns1024

along the transitions than older ones. This is primarily due to the fact that1025

younger agents tend to own larger shares of their wealth portfolio in assets1026

that appreciated substantially during this period, such as housing and stocks,1027

and these agents tend to have more leveraged portfolios (i.e., more debt).1028

Appendix C.2. Shocks before 20201029

In Section 5.1, we present all five shocks after 2019. Here, we provide these1030

shocks prior to 2020. Figure Appendix C.2 plots the asset return and job-1031

separation shocks pre-2020. The key insight from this figure is that both1032

returns and separation shocks are relatively stable prior to the COVID-191033

pandemic, which validates our decision to use the pre-pandemic period as a1034

steady state for the model. In addition, job-separation shocks become mostly1035

zero after 2021. By construction, the other shocks are not active during1036

this period, since there were no economic impact payments, additional UI1037

transfers, or additional mortality risk from any source.1038
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Figure Appendix C.2: Time series paths for shocks pre-2020

(a) Asset returns shock
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(b) Job-separation rate shock
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Note: This figure plots series for the estimated shocks prior to 2020, for the mean and median of the asset
return shock and the job-separation shock.

Appendix C.3. Economic impact payments1039

Here, we provide details on how we measure economic impact payments in1040

the data and map them into our model as shocks.1041

There were three rounds of economic impact payments (EIP) after COVID-1042

19. For all three rounds, transfer amounts include a supplement associated1043

with the number of children under the age of 17 or number of dependents in1044

the household. For simplicity, we treat all dependents as children under the1045

age of 17. This supplement amount could be substantial, equating the size of1046

the base transfer in the case of the second and third round of payments. This1047

requires us to adjust transfer amounts based on the size of the household.1048

To do this, we rely on data from the Census Bureau on the average number1049

of people under and over age 18 per household, by the age of householder,1050

for 2019.31 For each age group for the householder, we divide the average1051

number of people under age 18 by the average number of people who are at1052

least 18 years old. We use this ratio as a modifier for how much of the de-1053

pendent supplement a householder of a certain age group receives. The 20191054

dependent modifiers are provided in the second column of Table Appendix1055

C.1. The effective transfer per eligible individual is then the adult transfer1056

plus dependent supplement times the modifier for that individual’s age.1057

31Please refer to America’s Families and Living Arrangements: 2019 from https://

www.census.gov/data/tables/2019/demo/families/cps-2019.html.

12



Table Appendix C.1: Effective transfers for each age group of householder

Age of householder Modifier 1st round 2nd round 3rd round

25-29 years 0.34 1353.16 793.76 1769.89
30-34 years 0.61 1486.51 953.78 2126.70
35-39 years 0.78 1571.20 1055.41 2353.30
40-44 years 0.64 1502.36 972.80 2169.11
45-49 years 0.43 1399.79 849.72 1894.66
50-54 years 0.22 1296.05 725.23 1617.09
55-59 years 0.11 1241.44 659.69 1470.96
60-64 years 0.08 1222.83 637.36 1421.15
65-74 years 0.05 1209.94 621.89 1386.66
75 years and over 0.03 1198.20 607.81 1355.26

Note: This table provides a modifier (second column) for how much of the dependent supplement a
householder of a certain age group (first column) should receive. Model counterparts of effective transfer
amounts of economic impact payments from the first, second, and third rounds of payments are provided
in the last three columns.

First round. The first round of transfers was associated with the CARES
Act and took place in March 2020. These transfers consisted of $1,200 per
person plus $500 per child under 17. Using CPI deflators P 2019

2020 = 1.012 and
P 2019
2021 = 1.059, we obtain the following amounts for adults and children:

T adult
2020m3 = 1200/1.012 = 1185.77

T child
2020m3 = 500/1.012 = 494.07.

The effective transfer is then computed as the adult transfer plus the relevant1058

modifier times the dependent transfer. For example, for a household between1059

25-29 years of age, the effective transfer amounts from the first round is1060

computed as 1185.77 + 494.07 × 0.34 ≃ 1353.2, which is shown in the third1061

column of Table Appendix C.1.1062

Second round. The second round of transfers was deployed in December
2020 as a part of the Tax Relief Act of 2020 and consisted of $600 per person
plus $600 per child under the age of 17:

T adult
2020m12 = 600/1.012 = 592.89

T child
2020m12 = T adult

2020m12.
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Third round. The third round came in March 2021 with the American
Rescue Plan and consisted of $1,400 per person plus $1,400 per dependent:

T adult
2021m3 = 1400/1.059 = 1322.00

T child
2021m3 = T adult

2021m3.

Appendix C.4. Impact of employment on mortality rates1063

In this Appendix, we explain how we discipline the mortality rate shock1064

such that it features higher death probability for employed relative to non-1065

employed, capturing the potential increase in COVID-19 transmission rates1066

from working in activities that involve physical contact.1067

First, we describe the key data inputs to our calculations. Eichenbaum1068

et al. (2021) calibrate an increase in probability of infection from work-related1069

activities of 17 percent. This is not sufficient for our purposes, as we need1070

to convert this into a probability of dying from infection, which may be1071

different across age groups. For simplicity, we divide the population into1072

those 49 years old and younger and those 50 years old and older. In the 20201073

U.S. Census, 64.4% of the U.S. population was 49 years old and younger.1074

From the Centers of Disease Control and Prevention, 6.32% of all COVID-1075

related deaths were for people 49 years old and younger.32 Finally, the World1076

Health Organization calculated the cumulative case fatality rate (CFR) from1077

COVID-19 in the U.S. in 2020 to be 4.92% (i.e., the percentage of people who1078

died conditional on infection, note that this is higher than the cumulative1079

CFR of around 1% through 2025).331080

Our goal is to compute the object Pr(COVID death|age ≥ 50). This1081

is equal to Pr(COVID death&age ≥ 50)/Pr(age ≥ 50) The denominator is1082

equal to 0.356, from the Census data. Using Bayes’ Theorem, we can write1083

Pr(age ≥ 50|COVID death) = Pr(COVID death|age ≥ 50)× Pr(age ≥ 50)

Pr(COVID death)
.

32See https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm.
33See https://ourworldindata.org/grapher/covid-cfr-exemplars.
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We can then rearrange and solve for our object of interest:

Pr(COVID death|age ≥ 50) = Pr(age ≥ 50|COVID death)× Pr(COVID death)

Pr(age ≥ 50)

= (1− 0.0632)× 0.0492

1− 0.644
= 0.1295.

Finally, we can infer the probability of COVID death for those under the age
of 50 by solving:

Pr(COVID death|age < 50) =
Pr(COVID death)− Pr(COVID death|age ≥ 50)× Pr(age ≥ 50)

Pr(age < 50)

= 0.0048.

Thus, the added probability of dying given employment is equal to 0.171084

times 0.1295 for those over the age of 50 and 0.17 times 0.0048 for those1085

under the age of 50. Notice that we assume equal infection rates for both1086

age groups, which is a reasonable assumption as 32% of all COVID-19 cases1087

in the US were for people over the age of 50 as of 2023—a similar fraction to1088

their share of the population.1089

Appendix C.5. Results without housing returns1090

In our baseline exercise, we compute returns shock using the observed changes1091

in returns for liquid assets such as bonds and stocks and for illiquid assets1092

such as housing. While the appreciation of house prices should create some1093

wealth effects on labor supply, it is insightful to analyze results in this exercise1094

without taking into account house price appreciation during this period, as1095

people may have not realized and/or internalized such capital gains.1096

In this section, we repeat our exercise but excluding housing returns from1097

the estimated rt(a, j) function. We present the results for the aggregate1098

labor market moments in Figure Appendix C.3. Clearly, excluding housing1099

appreciation from the exercise slightly moderates the increase in the retired1100

share and therefore the drop in employment-to-population ratio. There is1101

very little effect on the unemployment rate, which is consistent with our1102

baseline results that returns do not seem to play an important role in driving1103

unemployment dynamics.1104
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Figure Appendix C.3: Changes in aggregate labor market moments: No housing returns
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(b) Unemployment rate
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(c) Employment/population
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Note: This figure plots the paths of the aggregate retired share (i.e., the fraction of retirees in the
population) (Panel (a)), unemployment rate (Panel (b)), and employment-to-population ratio (Panel (c))
in the data and the model. We provide results from two different exercises in the model: the baseline
exercise (blue lines) and a version where we do not consider returns on housing (green lines). We take
six-month moving averages both in the data and in the model, and plot the percentage point deviation
from the 2019 average in the data and stationary state of the model.

Appendix C.6. Model validation along the transition1105

Section 6.3 in the main text provides results to compare the predictions of our1106

model along the transition with changes in outcomes in the data. In doing1107

so, we discuss two additional results that are not presented in Section 6.3.1108

Here, we now provide these two results. In particular, we compare changes1109

in the average net worth and changes in monthly flow rates into and out of1110

retirement in the model and the data during 2020-2023.1111

Change in the average net worth. Figure Appendix C.4 plots the1112

average net worth in the SCF for the period in analysis, computed using the1113

imputation procedure described in Section 4.1, and the equivalent wealth1114

series in the model along the transition.34 We plot percent changes relative1115

to the baseline, which is the average net worth in the 2019 SCF for the1116

data and the stationary state for the model. The model captures the broad1117

movements in the average net worth, slightly overstating its rise after 2021.1118

This result signals that our estimated return function does a good job of1119

matching the evolution of net worth during this period.1120

34In the model, we follow a similar imputation procedure in order to make the model
outcome comparable with the data, taking the initial joint distribution of age and net
worth, and iterating forward using the estimated return function rt(a, j). In particular,
for the purposes of this figure only, we do not use the model’s decision rules as we cannot
account for changes in consumption/savings behavior either in the data.
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Figure Appendix C.4: Change in average wealth along the transition: Data vs model

2020-01
2020-07

2021-01
2021-07

2022-01
2022-07

2023-01
2023-07

2024-01
10

0

10

20

30

40

Ch
an

ge
 f

ro
m

 b
as

el
in

e 
(%

)

Data
Model

Note: This figure plots the change in the average net worth during 2020-2023 in the data and the model.
The data series are computed using the imputation procedure described in Section 4.1. The model series
is obtained under a similar imputation procedure to make the two series comparable.

Changes in monthly flow rates into and out of retirement. Figure1121

Appendix C.5 compares changes in monthly flow rates into (Panel a) and1122

out of (Panel b) retirement in the data and model. To compute the monthly1123

flow rate into retirement in the data, we use CPS and measure the ratio1124

of the number unemployed or employed individuals in a given month t who1125

become retired in the next month t+ 1, to the total number of unemployed1126

or employed individuals in t. Similarly, we compute the monthly flow rate1127

out of retirement by calculating the ratio of the number of retired individuals1128

in t who become unemployed or employed in t + 1, to the total number of1129

retired individuals in t. We then repeat these calculations for each month.1130

We compute the same moments in the model using the same steps. We then1131

compute pp changes from the average flow rates in 2019 in the data and from1132

the average flow rates in the stationary state of the model.1133

Panel (a) plots changes in the monthly flow rate into retirement in the1134

data and model.35 The model replicates well the initial spike in 2020, match-1135

ing both the level and the dynamics.1136

35Monthly flow rates into and out of retirement in the model are volatile during the
transition period mostly because of observed fluctuations in job-separation rate shocks by
quintiles of the labor income distribution, as shown in Panel (b) of Figure 5.1.
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Figure Appendix C.5: Changes in flow rates into and out of retirement: Data vs model
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(b) Flow rate out of retirement
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Note: This figure compares changes in monthly flow rates into (Panel a) and out of (Panel b) retirement
in the data and model. To compute the monthly flow rate into retirement in the data, we use CPS and
measure, for each month, we compute the ratio of the number unemployed or employed individuals in
a given month who become retired in the next month, to the total number of unemployed or employed
individuals in that month. We obtain the monthly flow rate out of retirement in a similar manner. The
model calculations follow the same steps. These figures present pp changes from the average flow rates in
2019 in the data and from the average flow rates in the stationary state of the model.

The model fails to account for the observed rise in late 2022. Notice that1137

this rise in the flow rate into retirement in the data is reflected in Panel (a)1138

of Figure 5.2 where the retired share in the data starts to rise after 20221139

until early 2023. The model is unable to capture this increase in the data1140

because it is driven by people younger than 62 retiring, and our definition1141

of retirement in the model includes only people older than 62. To see why,1142

compare the evolution of excess retirements per our baseline definition in1143

Panel (b) of Figure 2.1 (based on self-reported retirement in the CPS) to1144

that of Panel (b) of Figure Appendix A.2, where we consider an alternative1145

definition of retirement that includes non-participants aged 62 and older.1146

Notice that while the baseline definition features an increase in the retired1147

share in late 2022, the alternative definition does not. Given the definition1148

of retirement in the model, we are therefore unable to capture this rise by1149

construction.1150

Similarly, Panel (b) shows that the model does a good job in matching1151

flows out of retirement: the initial decrease in 2020, and then slow recovery1152

back to the baseline (steady state/pre-pandemic) level.1153
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