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Abstract

Borrower-lender relationships tend to be long-lasting, and lender switching is infrequent.
What are the aggregate consequences of these facts? We address this question in a model of
heterogeneous banks subject to financial frictions. We incorporate lending relationships using
loan portfolio adjustment costs for borrowers and accumulation of “relationship capital” for
lenders. The model’s implied loan demand system is directly estimated on administrative loan-
level micro data to recover the key novel parameters governing the strength and persistence
of lending relationships. We find that financial and relationship capital are complements, and
so banks constrained with respect to one tend to be constrained with respect to the other.
Relationship lending generates endogenous persistence in the economy’s response to financial
crises, with recoveries becoming more sluggish, and it also affects the interplay between monetary
policy and financial stability.
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1 Introduction

Banks operate in imperfectly competitive markets in their core business activities: deposit taking
and loan making.1 Market power generates economic profits for banks by enabling them to lend at
interest rates above the fair (risk-adjusted) cost of capital and borrow at interest rates below the
prevailing risk-free rate. Such economic profits have long been considered a “feature, not a bug”, as
they generate franchise value that curbs risk-taking by banks, thereby promoting financial stability
(Demsetz et al., 1996).

This paper studies one source of banks’ lending market power: long-lasting lending relationships
between borrowers and lenders. We present a theory in which these relationships introduce dynamic
considerations into banks’ loan pricing and financing decisions. Specifically, banks internalize the
fact that while higher interest rates may generate larger profits today, they may erode relationships
and thereby worsen the bank’s lending prospects tomorrow. The central focus of this paper is to
quantify the aggregate consequences of lending relationships by showing how they interact with
financial frictions at the individual bank and industry levels.

We study lending relationships in the context of a dynamic equilibrium model with heterogeneous
banks who are subject to financial constraints. We model lending relationships using two key
features. First, borrowers may borrow from many banks, but face costs of adjusting the shares
of their total lending sourced from each bank. These adjustment costs endow banks with market
power in lending. The adjustment is relative to a single metric – which we term “relationship capital”
– which summarizes borrowers’ prior loan sourcing decisions in a manner akin to a “deep habit” (e.g.
Ravn et al. (2006)). In this setup, banks face loan demand curves which depend on both their
interest rates and their relationship capital; stronger relationships mean higher levels and lower
price elasticities of loan demand. Likewise, aggregate loan demand depends not only on the interest
rates offered, but on the joint distribution of interest rates and relationships. Second, whether
a borrower’s relationship with a given bank strengthens or weakens period-to-period depends on
the bank’s pricing decision. Thus, loan market power has a dynamic component: like standard
monopolists, banks extract rents commensurate with the static inverse elasticity of loan demand,
but these rents are extracted over the (potentially infinite) life of the relationship.

This paper makes four main contributions.
First, our model is the first to our knowledge which can be used to evaluate how lending re-

lationships shape industry-level and aggregate outcomes in the presence of financial constraints.
Importantly, our framework nests a simpler competitive benchmark in which borrowers do not face
loan portfolio adjustment costs. In this case, there is no meaningful notion of relationships, and
banks take prices as given and choose how much to lend, how many deposits to issue, and how large
a dividend to pay out. This nesting allows us to neatly detail how relationships alter bank behavior
in our quantitative analysis.

1See, for example, Berger and Hannan (1998). Banking industry concentration and market power is well doc-
umented both internationally (Fernández de Guevara et al., 2005) and in the U.S., which has experienced a stark
secular decline in the number of banks (Prescott and Janicki, 2006) over the last several decades.
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Second, we establish that the three key parameters which govern lending relationships in the
model can be directly estimated using loan-level micro-data. This proceeds in two steps. First,
we apply the method of Amiti and Weinstein (2018) to estimate the model’s bank-level demand
curve. This yields an estimate of the static interest rate elasticity of loan demand, and this pins
down the intensity of the loan portfolio adjustment costs. Second, we use the residuals of this
demand curve estimation to estimate the law of motion for relationships at the bank level. This
informs the dynamic components of relationship capital, providing estimates of its persistence and
responsiveness to banks’ loan pricing choices. This step uses the fact that, through the lens of our
model, relationship capital is the key non-price shifter of loan demand. Beyond facilitating our
quantitative analysis, the ability to estimate the demand system directly informs how we model
relationships. In particular, one might consider two alternative “aggregators” which could encode
relationships: constant elasticity of substitution (CES) and Kimball (1995). The former is rejected
by the fact that banks demonstrably face different loan demand elasticities in the data; the latter
allows for larger banks to face lower elasticities, but does not allow for us to cleanly recover the
parameters determining the dynamics of relationships.

Third, we show using our quantitative model that financial and relationship capital emerge as
complements. Relationships governs the speed at which banks recapitalize in the wake of adverse
financial shocks. At the individual level, a bank with strong relationships which receives a negative
financial shock can “expend” relationship capital by charging high interest rates in order to more
easily weather the adverse shock. Banks with stronger relationships therefore recapitalize more
quickly than banks with weaker relationships. Relationships therefore function as an extra buffer,
on top of conventional equity.

Fourth, we show that relationship lending plays an important role in determining how the econ-
omy responds to aggregate shocks. We compare the responses to aggregate shocks in our baseline
economy with lending relationships to those in a perfectly competitive banking economy. In re-
sponse to a large aggregate financial shock in which all banks lose a fraction of their equity, lending
relationships mute the initial contraction in the credit market, but increase the duration of the
recovery. This endogenous persistence arises from a slower recapitalization in the banking sector,
as banks manage the complementarity of financial and customer capital. That is, despite the short
term costs of lending under increased financial constraints, banks have a dynamic incentive to prop
up lending on impact of the shock to preserve lending relationships, but this suppresses interest
rates and profitability, creating a shallower but more protracted recession. We also show that both
types of economies feature strong pass-through of monetary policy shocks to credit market variables,
but that the effects on bank financing are very different: monetary tightening causes net worth to
fall in the competitive case, and to rise in the relationship lending case. In a competitive economy,
higher funding costs induce banks to deleverage and thus deplete their net worth. In the relationship
economy, by contrast, banks’ incentives to sustain their lending imply a reallocation of their funding
structure towards retained earnings, not just a cut in deposit financing. The nature of bank rela-
tionships can therefore have important implications for how monetary policy interacts with financial
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stability. The third type of shock we consider is a shock to credit demand, and we show that the
relationship lending economy exhibits larger fluctuations in interest rates, but smaller fluctuations
in the quantity of credit.

The rest of the paper is structured as follows. The remainder of this section discusses our paper’s
context in the relevant literatures. Section 2 establishes several empirical facts which motivate our
approach to modeling lending relationships. Section 3 presents our model environment. Section
4 discusses how we take our model to the data. Sections 5 and 6 present the main results from
our quantitative model, with the former focusing on the cross-section and the latter focusing on
aggregate dynamics. Section 7 concludes and describes some promising areas for future research
related to this paper.

Related Literature This paper contributes to three distinct literatures in macroeconomics and
finance: customer capital in macroeconomic models, structural models of banking, and empirical
studies of the effects of bank market power.

While the dynamics of customer capital can be related to an older literature on consumption
habits, a seminal formalization of customer capital in a macroeconomic model is the work of Gourio
and Rudanko (2014). In the context of nonfinancial firms, Gilchrist et al. (2017) argue that the
interaction between customer capital dynamics and financial constraints was key to explain the
dynamics of inflation in the U.S. during the Great Recession. Our modeling of customer capital
dynamics is reminiscent of theirs, also in the context of a model of heterogeneous firms. We argue
that customer capital interacts with capital constraints that are specific to the banking industry. This
is critical to understanding dynamics around recent recessions, since the aggregate capitalization of
the banking sector has been argued to be a relevant state variable for macroeconomic performance
(Adrian and Boyarchenko, 2012).

We study the effects of bank customer capital from a positive perspective in the context of
a dynamic equilibrium model of heterogeneous banks that take deposits, make loans, and face
constraints that depend on their net worth. We therefore contribute to an emerging literature that
employs the tools of heterogeneous agent macroeconomic models to study questions that are related
to the banking industry. Bigio and Bianchi (2014) use a quantitative model with heterogeneous banks
and liquidity frictions in the interbank market to study monetary policy implementation. Corbae
and D’Erasmo (2019) use a quantitative model of heterogeneous banks where size is correlated with
market power to study the effects of capital requirements. We take these requirements as given, and
study how their interaction with customer capital affects the overall stability of the banking system.
(Neri et al., 2010) introduce a monopolistically competitive banking sector in an otherwise standard
monetary DSGE model, and study how this affects the transmission of standard shocks.

Finally, our paper relates to a broader empirical literature that studies the efficiency and stability
consequences of banking market power and concentration. Recent work on this topic has been
focused on market power on the deposits market. Egan et al. (2017) use detailed branch-level data
on deposit quantities and prices to estimate a demand system for secured and unsecured deposits
at large U.S. banks. These estimates are then combined with a dynamic model of bank runs, which
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allows them to study the probabilities of counterfactual runs on these large banks during the financial
crisis. Drechsler et al. (2017) argue that bank market power in the deposit markets gives rise to a
new channel of transmission for monetary policy in the U.S.

We focus instead on customer capital on the loan side of the balance sheet. Our interpretation
of bank customer capital is closely linked to the notion of relationship lending, the fact that both
banks and borrowers find it worthwhile to maintain long-standing relationships. A long-standing
literature has found that banks smooth loan rates when faced with adverse cost of funding shocks
(Berger and Udell, 1995; Berlin and Mester, 1998). There is also an extensive theoretical literature
that derives conditions under which the optimal contract between a lender and a borrower shares
some of those features under a variety of frictions, such as asymmetric information, search frictions,
or switching costs. We take a different approach, by taking the lending contract and the process for
customer capital dynamics as given, and instead study their macroeconomic implications.

2 Empirical Motivation

In this section, we present some facts on bank loan markets for the US that serve as motivation for
our model analysis. We use loan-level micro data for the U.S. to document two main facts regarding
bank loans: (i) switching between banks is relatively infrequent; and (ii) there exists an interest rate
life cycle for new lending relationships, featuring low interest rates in the beginning that rise over
the length of the relationship.

2.1 Data

Our main source of data is the Commercial & Industrial loan schedule H.1 of the Federal Reserve’s
FR Y-14Q dataset (Y-14 for short). This is a quarterly panel of individual loan facilities held in the
books of the largest bank holding companies (BHCs) in the US.2 The Y-14 includes all loan facilities
held in the books of covered BHCs with commitments larger than $1 million. It contains detailed
information about the characteristics of each loan, such as the identity of the borrower, the type of
loan, interest rate, purpose of loan, etc.

We restrict our loan sample along several dimensions. First, we exclude loans to non-US ad-
dresses, loans in currencies other than the US dollar, and loans to firms without a US Tax Identi-
fication Number (TIN, our main firm identifier). We also exclude loans to the financial and public
administration sectors, that is, to any entity classified as a bank or with NAICS code 52 or 92.3 Due
to their different nature and imperfect coverage, we also drop syndicated loans.

2Until 2019, the dataset includes all BHCs with more than $50 billion in assets. From 2019 onwards, only BHCs
with more than $100 billion in assets are included.

3We also exclude loans made to companies with NAICS codes 5312 (Offices of Real Estate Agents and Brokers)
or 551111 (Offices of Bank Holding Companies).

4



1.
5

2
2.

5
3

3.
5

2014q3 2016q3 2018q3 2020q3 2022q3
quarter

Count Value

Switches/Total

Figure 1: Switches as a percentage of total outstanding loans

Notes: See text for details. A loan is classified as a switch if it is (i) a new loan, and (ii) from a bank with which
the firm has had no relationship in the past year.

2.2 Facts on US Bank Loan Markets

Switching lenders is infrequent. Figure 1 presents time series plots on the percentage of loans
that correspond to “switches,” as a percentage of total outstanding loans. Our definition of “switch”
is adapted from Ioannidou and Ongena (2010): a loan is considered a switch if it is a new loan and
originates from a bank with whom the firm has had no (observable) relationship in the past year.
The time series plots show that in terms of both dollar value and loan counts, switches are between
2 and 3.5% of total loans. Thus switching is relatively infrequent.

It is worth noting that due to the characteristics of the Y-14 dataset, we are likely to be overes-
timating the frequency of switching. First, loan observations may enter and/or leave our panel for
many reasons other than origination or maturity. A loan may have been originated with a committed
exposure of under $1 million, with a credit limit increase above $1 million being renegotiated at a
later date. In that case, we only observe the loan after the credit limit has increased. Additionally,
banks may not keep originated loans in their portfolios, for example by selling them to other finan-
cial institutions. Second, since we only observe credit facilities above $1 million dollars, we do not
observe small firms that borrow lower amounts. It is well documented that large firms tend to have
more relationships and switch more often than smaller ones (Petersen and Rajan, 1994). Among
studies that use more comprehensive loan-level datasets, Ioannidou and Ongena (2010) find that 3%
of all originations are classified as switching loans for Bolivia, while Farinha and Santos (2002) find
that on average 4% of all yearly originations involve switching, using data for Portugal.

5



Interest rates first fall, then rise over the life cycle of a relationship. We next investigate
how interest rates evolve over the life cycle of firm-bank relationships. We follow an approach
inspired by Ioannidou and Ongena (2010): we first identify loan originations that correspond to new
relationships (again, defined as the absence of an observable relationship between the borrowing
firm and lending bank in the previous year), then match those with loan originations from existing
relationships that have similar observed characteristics. More specifically, “matched” loans are the
same with respect to the following observable characteristics: (i) loan origination date; (ii) maturity
(in years); (iii) originating bank; (iv) percentile of loan size; (v) loan type (term loan, credit line,
or other); (vi) interest rate variability; and (vii) percentile of default probability. Since there are
more non-switching loans than switching loans in our data, we match each unique non-switching
loan with a similar switching loan, meaning that some switching loans may appear multiple times
in the dataset. This procedure generates 20,155 matched loan pairs.

For each pair p, we compute the spread between the switching and non-switching loans and
denote it by yp,t, where t is the quarter in which the spread is computed. We then run regressions
of the following type:

yp,t =
13∑
i=1

γi1[τp,t = i] + ϵp,t (1)

where τp,t is time since origination for the matched loan pair p at time t, measured in quarters. Time
since origination can alternatively be interpreted as the length of the relationship for the switching
loan (by construction, as a switching loan is such that no relationship existed). We interpret the
estimated coefficients {γi} as the average discount or premium that a switching loan obtains relative
to a non-switching loan in period i of its life cycle.4

The estimation results for regression (1) are summarized in Figure 2, which plots the estimated
marginal effects along with 90% confidence intervals based on robust standard errors. The figure
shows that the average spread between switching and non-switching loans is negative for most of
the first year, meaning that switching loans pay lower interest rates on average. After one year,
the spread becomes positive, meaning that switching loans start paying interest rates that are, on
average, higher than those of non-switchers. This positive spread seems to persist for the remainder of
the relationship, even though the spread becomes statistically indistinguishable from zero after three
years. This life cycle pattern is consistent with the one detected by Ioannidou and Ongena (2010)
for Bolivia: they also find that switchers start out by paying lower interest rates than nonswitchers,
but that these interest rates increase over time and eventually exceed those of non-switchers. The
authors use these findings to discriminate between alternative theories of firm-bank relationships, as
these results suggest that relationships are influenced by switching costs that give rise to a hold-up
problem: the bank initially attracts the borrower using a “teaser rate”, and then exploits the fact
that switching is costly in order to extract surplus.

It is worth pointing out that we find spreads of smaller magnitudes than Ioannidou and Ongena
(2010). This can be explained by many factors, including lower average interest rates in the US

4We consider i = 1, . . . , 13, where each i is a quarter since origination and i = 13 stands for quarters after 12.
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Figure 2: Average spread between loans for new and existing relationships

Notes: See text for details. At each time since loan origination, the dot represents the point estimate of γi from (1),
and the bars represent the associated 90% confidence interval.

versus Bolivia and the fact that the firms in our sample tend to be larger and potentially safer than
those in Bolivia. Both forces lead to compression in interest rates across firms. The $1 million dollar
loan cutoff effectively excludes most small enterprises from our sample.

Summary Taken together, these facts suggest that one critical aspect of lending relationships is
that aversion to switching generates a specific notion of market power for the lender which evolves
over the course of the relationship. When attracting a new borrower, the bank is at a disadvantage
relative to any incumbent lenders the borrower has. Conditional on forming a relationship, though,
the bank gradually develops the advantages of the incumbent, i.e. the ability to charge above
market rates. These facts motivate our parsimonious specification of lending relationships in the
next section using costs of adjusting how borrowers source their loans relative to some benchmark
sourcing arrangement, combined with banks’ internalization of how these costs evolve based on their
pricing decisions.
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3 A Model of Relationship Lending

We consider a stationary economy populated by a unit continuum of monopolistically competitive
banks j ∈ [0, 1] and a continuum of identical firms who borrow from them. Time is discrete and
infinite, and there is a single good. The risk-free rate is r, which defines a risk-free discount price
of q = (1 + r)−1, the wage rate is w, and the user cost of capital (rental rate) is uc. All these
prices are exogenously specified.5 While the model’s focus is on bank behavior, described in Section
3.2, we present first the firms’ problem in Section 3.1 since it delivers the demand system banks
face and helps introduce notation. Section 3.3 defines equilibrium. Finally, Section 3.4 discusses the
motivation for and implications of the main assumptions in our framework. Proofs of all propositions
are contained in Appendix A.

3.1 The firm: defining bank-specific and aggregate loan demand

There is a continuum of firms indexed by i ∈ [0, 1]. All firms are identical and there are no idiosyn-
cratic shocks to firms, and so the model admits a representative firm. Firms operate a decreasing
returns production technology using labor n and capital k, producing y = Akαnη units of output for
α+ η ∈ (0, 1) given total factor productivity A. Each period, the firm chooses: (i) how much labor
and capital to hire; (ii) how much to borrow; and (iii) the sourcing of its borrowing across banks j.
The firm is subject to a working capital constraint as in Christiano et al. (2005): total lending must
be at least a fraction κ ≥ 0 of its total costs, which include the wage bill and the costs of renting
capital. The firm’s total loan demand today is L′, and the distribution of borrowing across banks is
L′ = {ℓ′j}, where ℓ′j is the face value of this period’s loan from bank j. The discount price of a loan
from bank j is qj , and we denote the set of loan prices across banks by Q = {qj}.

We model lending relationships as follows. For each bank j, we summarize the intensity of
a firm’s relationship with that bank by sj ; the set of relationships across all banks is S = {sj}.
We assume it is costly for a firm to source its loans in a way that deviates from the distribution
of relationships. We implement this with a quadratic cost function with scale parameter ϕ ≥ 0,
which penalizes deviations in the share of total lending sourced from bank j from the (relative)
intensity of the firm’s relationship with bank j.6 For tractability, we assume that borrowers take
current relationships as given and do not internalize how current loan sourcing decisions affect future
relationships, in the spirit of “external” habits in the literature (e.g. Ravn et al. (2006)).

Under this formulation, a firm does not directly care about the “identity” j of any bank from
which it borrows; rather, it cares only about the intensity of its relationship with the bank, s, and
the loan price the bank offers, q. Therefore, the decision-relevant object which defines borrowing
opportunities for the firm is the joint density of prices and relationships across banks, µ(q, s), which

5It is straightforward to embed our relationship framework into a general equilibrium model. Since our primary
focus is on the banking industry, however, we simplify our model by keeping these prices exogenous.

6We need not restrict the adjustment costs to be quadratic; this assumption yields intuitive closed forms that
facilitate exposition and estimation and make computation more efficient. We discuss this later in more detail.
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summarizes {Q,S}. The firm’s dynamic optimization problem may then be written recursively as:

W (L;µ) = max
n,k,L′,{ℓ′(q,s)}

Akαnη − wn− uck︸ ︷︷ ︸
net operating income

+ L′ −
∫
ℓ(q, s)dµ(q, s)︸ ︷︷ ︸

borrowing net of repayments

(2)

− ϕ

2
L′

∫ (
qℓ′(q, s)

L′ − 1− (s− S)

)2

dµ(q, s)︸ ︷︷ ︸
sourcing adjustment costs

+ qE
[
W (L′;µ)

]︸ ︷︷ ︸
continuation value

subject to [working capital] κ(wn+ uck) ≤ L′ (3)

[loan sourcing] L′ ≤
∫
qℓ′(q, s)dµ(q, s) (4)

The firm’s flow profits in (2) sum net operating income Akαnη −wn− uck and net borrowing (new
loans less repayments), less adjustment costs. L′ ≡

∫
qℓ′(q, s)dµ(q, s), defined in the loan sourcing

constraint (4), are total funds borrowed today, and S ≡
∫
sdµ(q, s) is the average relationship

intensity. The firm discounts at the risk free rate and recognizes that, in a stationary equilibrium,
the joint distribution of prices and relationship intensities will be the same tomorrow as today, even
if specific banks shift around in the distribution. Constraint (3) is the working capital constraint.
Note again that the borrower does not take into account its choice of loan portfolio today on habits
tomorrow: hence there is no “law of motion” for s here. This reflects the externality of habits:
each individual firm is infinitesimally small and does not internalize the impact of its actions on
relationship intensities.

Intuitively, the adjustment cost function induces firms to choose a distribution of loan sourcing
that aligns with the distribution of relationship intensities. All else equal, firms would like to choose
their borrowing shares at each bank in line with the relative intensity of their relationship with that
bank, since this implies no adjustment costs.7 The quadratic functional form is not essential to our
results (see Appendix A.3), but gives rise to a linear demand system that is amenable to estimation.
The following proposition summarizes the loan demand system that arises from the firm’s problem:

Proposition 1. (Loan demand system) Given a joint distribution of prices and relationship
intensities µ(q, s), bank-specific loan-demand ℓ′(q, s) and aggregate loan demand L′ satisfy

qℓ′(q, s;µ)

L′(µ)
= 1 + (s− S)− q

ϕ
[r(q)−R(µ)] for all q, s (5)

L′(µ) = κ(α+ η)

[
A
(
α
uc

)α ( η
w

)η
1 + κ(qR̃(µ)− 1)

] 1
1−α−η

(6)

where r(q) = q−1 is the interest rate implied by the bank’s choice of loan price q, S =
πρq

1−πρs
is the

average relationship intensity, R(µ) = Eµ[r(q)] is the average interest rate, and R̃(µ) is the effective
interest rate, defined as:

R̃(µ) = R(µ) + Cµ[r(q), s]−
q

2ϕ
Vµ[r(q)] (7)

7“Relative” relationship intensities are simply deviations between s and S.

9



which adjusts the average interest rate for the covariance of interest rates and relationship intensities
Cµ(r, s), and the overall variance of interest rates Vµ(r).

Equation (5) defines the demand curve faced by a bank with relationship intensity s charging
price q as a function of aggregate loan demand, the average interest rate, and the average relationship
intensity. The loan demand at a given bank is decreasing in the loan rate spread over the benchmark
r(q)−R(µ), with elasticity governed by the risk free rate and the adjustment cost. This is a standard
price effect: when a given bank’s loans are cheap relative to its competition, that bank will capture
a higher share of total lending, all else equal. Steeper adjustment costs (higher ϕ) imply a lower
elasticity of loan demand with respect to price. In addition, bank-level loan demand increases in the
strength of the firm’s relationship with that bank s. Thus, stronger existing lending relationships
simultaneously increase the level and lower the price elasticity of loan demand, endowing these banks
with more effective market power.

Equation (6) determines aggregate loan demand. Conveniently, the entire joint distribution of
loan prices and relationship intensities may be summarized by a single statistic: the effective interest
rate R̃(µ) from equation (7). This term has three components. First, the average interest rate term
R(µ) conveys that when interest rates are higher on average, aggregate loan demand is lower. Second,
loan demand is dampened further when the banks with whom the firm has the strongest relationships
charge the highest spreads, as indicated by the covariance term Cµ(r, s). Third, holding fixed the
previous two terms, greater cross-sectional interest rate variance, Vµ(r), burnishes loan demand by
creating scope for the firm to gravitate towards cheaper banks.

3.2 Banks: dynamic pricing in the presence of relationships

Each bank uses retained earnings (its net worth), newly issued equity e < 0, and deposits d′ ≥ 0

(investment in riskless securities if d′ < 0) to make loans ℓ′ at discount price q. Deposits are risk-free
(insured) and issued at exogenous price qd that is the same for all banks. Banks value dividends
e ≥ 0 and face costs of issuing equity: we follow the dynamic corporate finance literature and model
bank preference for dividends via the increasing function ψ(e). The value of positive dividends is
simply ψ(e) = e, e ≥ 0, but equity issuance (i.e. negative dividends) is costly, with ψ′(e) > 1 for
e < 0. Banks’ net worth can be shifted by an idiosyncratic shock z which proxies excess returns on
unmodeled sectors of banks’ loan portfolios and is drawn from a distribution Γ(z, z′). Finally, we
assume that banks exit with exogenous iid probability 1−π for π ∈ [0, 1] each period. Exiting banks
are replaced with banks with no net worth and no relationships at the start of the next period.

Banks face a regulatory capital constraint that specifies that total lending, scaled by a factor
χ, may not exceed the total value of equity, reflecting the current period’s lending and financing
decisions. We assume that each bank is monopolistically competitive, setting its loan price taking as
given the bank-specific loan demand function (5), as well as the level of aggregate demand and the
key moments of the distribution µ(q, s) described in Proposition 1. Crucially, individual banks do
take into account the impact of their lending choices today on their relationship intensities tomorrow.
We assume that relationships build up over time as a convex combination of the current relationship
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intensity (coefficient ρs) and the share of total loans issued today (coefficient ρq).
At the beginning of the period, a bank’s state can be summarized by its net worth, n, its

relationship intensity, s, and its realization of the idiosyncratic shock, z. We can write the problem
of an individual bank recursively as:

V (n, s, z;µ) = max
q,e,ℓ′≥0,d′,s′,n′

ψ(e) + qπE
[
V
(
n′, s′, z′;µ

)]
(8)

subject to [budget constraint] qℓ′ + e ≤ n+ z + qdd′ (9)

[capital requirement] χqℓ′ ≤ qℓ′ − qdd′ (10)

[relationship building] s′ = ρq
qℓ′

L′(µ)
+ ρss (11)

[market power] ℓ′ = ℓ(q, s;µ) (12)

[net worth accumulation] n′ = ℓ′ − d′ (13)

The optimal policies for the control variables associated with solving this problem are denoted gy(x)
for y ∈ {q, e, ℓ′, d′, s′}, where x = (n, s, z) summarizes banks’ state variables.

The bank’s objective function (8) reflects its valuation of the present value of dividends net of
issuance costs, discounted at factor q and adjusting for the exit probability 1−π.8 Constraint (9) is
the bank’s flow budget constraint: loan issuances and dividends must be financed from net worth,
adjusted for the realization of the shock, deposits. Constraint (10) is the capital requirement: the
value of the bank’s equity (loans less deposits) must exceed a pre-specified fraction χ of the value of
its assets (loans). Equation (11) is the law of motion for the intensity of the firm’s relationship with
the bank, which the bank internalizes. Equation (12) imposes the relationship between loan demand,
price, and relationship intensity implied by (5). Finally, equation (13) shows how the bank’s net
worth evolves as a function of its lending and financing policies.

We can establish the following result about the bank’s problem:

Proposition 2. (Optimal lending policies) Is ψ(e) is twice continuously differentiable, banks’
optimal loan prices satisfy the Euler equation

Πt + qπρqEt

[∑∞
i=0 (qπ(ρq + ρs))

i Lt+2+i

Lt+1
Πt+1+i

]
q
qt
πE [ψ′(et+1)]

= ϵ−1(qℓ, q) (14)

where Πt is the bank’s net rate of return in period t per unit of loan and ϵ−1(qℓ, q) is the inverse
price elasticity of loan demand, given respectively by

Πt =
q

qt
πEt

[
ψ′(et+1)

]
− ψ′(et) + λt(1− χ) (15)

ϵ−1(qℓ, q) = ϕ
q

q

qℓ

L′ (16)

8Note that for the individual bank problem, expectations are taken with respect to the idiosyncratic shock z; hence
why we make explicit the expectation with respect to µ in the firm problem.
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and where λt = ψ′(et) − q
qd
πEt [ψ

′(et+1)] ≥ 0 is the Lagrange multiplier on the capital requirement
in period t.

Equation (14) has an intuitive interpretation. The left hand side represents the sum of the bank’s
discounted marginal net profits associated with increasing its loan price. The choice of loan price
today affects not only today’s profits (Πt), but also profits in all future periods (summation term).9

The weight on this second term increases with the loading on current period lending in the law of
motion for relationship intensity ρq, since this indicates a stronger dynamic pricing effect. The effec-
tive discount rate for future profits is qπ(ρq+ρs): the first two terms reflect the equilibrium discount
factor and the probability of bank survival, while the latter term reflects the overall persistence of
relationships.10 The profits in each period (15) reflect the return on loans, less their financing cost,
plus the marginal benefit of easing the capital requirement.

This discounted profit stream in (14) must equal the inverse price elasticity of loan demand,
ϵ−1(qℓ′, q), which measures the bank’s effective market power. As shown in equation (16), this term
is only positive due to the relationship adjustment costs (ϕ > 0), and increases with the bank’s
relative loan share. It is instructive to consider two extreme cases. First, when the bank’s discount
factor is zero, expression (14) resembles the classical static monopolist pricing condition, where the
optimal price is set so that the markup is equal to the inverse elasticity of demand. The same
also holds if ρq is zero, i.e. if there is no dynamic effect of today’s loan price choice on tomorrow’s
demand. Second, in the competitive limit as ϕ → 0, the price elasticity of loan demand becomes
infinite, eliminating the term on the right hand side of (14). Moreover, in this limit case, there is
no notion of relationships, which eliminates the second term on the left hand side. Thus, in the
competitive case, we recover the standard pricing condition Πt = 0.

Evolution of bank distribution Given a current distribution of banks over states m(x), the
mass of banks next period with a particular x′ is

m′(x′;µ) = π

[∫
1

[
n(x′) = gℓ(x;µ)− gd(x;µ), s(x

′) = ρq
gq(x;µ)gℓ(x;µ)

L′(µ)
+ ρss(x)

]

×Γ(z(x), z(x′))dm(x;µ)

]
+ (1− π)1

[
n(x′) = 0, s(x′) = 0

]
Γ(z(x′)) (17)

The term in brackets in equation (17) describes state transitions for incumbent banks. For these
banks, we require that next period’s net worth and relationship intensity be consistent with the
policies chosen this period, and that the evolution of the idiosyncratic shocks be consistent with Γ.
The second term captures entrant banks, who begin with no net worth, no lending relationships,
and idiosyncratic shocks drawn from the ergodic distribution Γ(z) implied by Γ(z, z′)

9Note that in the stationary equilibrium, Lt = L′(µ) for all t, and so the term Lt+2+i

Lt+1
cancels out.

10If ρq + ρs = 1, then there is no depreciation in relationships and this term gets its maximal weight.
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3.3 Definition of equilibrium

Definition 1. A stationary recursive competitive equilibrium consists of: (i) bank-specific
and aggregate loan demand functions, ℓ(q, s;µ) for all (q, s) and L(µ); (ii) bank policy functions
gq(n, s, z;µ) and gd(n, s, z;µ); (iii) a stationary joint distribution of prices and relationships µ(q, s);
and (iv) a stationary joint distribution of banks over idiosyncratic states m(n, s, z;µ) which satisfy:

1. borrower optimality: bank-specific and aggregate loan demand satisfy (5) and (6);

2. bank optimality: banks’ optimal policy functions solve the bank problem (8) – (13);

3. stationarity of bank distribution: the distribution of banks over idiosyncratic states is a
fixed point of the operator defined in (17); and

4. consistency of distributions: the joint distribution of prices and relationships is consistent
with the bank state distribution and with banks’ optimal policies:

µ(q, s) =

∫
1 [q = gq(n, s, z;µ)]m(dn, s,dz) for all q, s (18)

3.4 Discussion of assumptions

Implementation of lending relationships Two key elements of the structure of lending relation-
ships in our model which bear further comment. First, we assume the representative firm maintains
relationships with all banks, and that costs come not only from relationship formation, but more
generally from relationship adjustment.11 This specification embodies two simple assumptions: (i)
all else equal, borrowers want to borrow more from banks with whom they have stronger relation-
ships; and (ii) firm-bank relationships strengthen through exposure. Our specification of adjustment
costs in (2) and the evolution of relationships (11) are exactly consistent with these assumptions.
Exposures – and therefore relationships – shift through time for two reasons in our model. First,
idiosyncratic shocks render some banks financially constrained, which leads them to charge different
prices and lend different amounts than other banks with the same s. Second, the exogenous exit of
banks and replacement with new banks yields a natural “life cycle” structure. As banks optimally
respond to their financial conditions, they may either build up or expend relationships as a form of
“customer capital,” as in Gourio and Rudanko (2014).

Second, we assume that the firm does not internalize the formation of lending relationships,
while banks do. The former assumption is made purely for tractability, as it is of course reasonable
to expect borrowers to respond to developments in their banks’ financial conditions by altering
exposures to these banks. While possible in principle to allow for the firm to internalize relationship
formation, it would require costly iteration between the firm and bank problems in the solution
algorithm. By contrast, the demand system in the current framework allows us to solve the model
with sole focus on the heterogeneous bank block. The fact that banks do internalize relationship

11Of course, relationship formation is also costly in our model; the specification of adjustment costs in (2) implies
that the firm incurs costs for borrowing any positive amount from a bank with no relationships (s = 0).
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formation shapes their optimal pricing policies, as highlighted in Proposition 2. As will be shown in
the quantitative analysis below, this has important implications for how banks respond to financial
shocks at both the individual level and in the aggregate.

Specification of relationship adjustment costs We assume quadratic adjustment costs in
loan shares in our baseline model. This specification is attractive for two primary reasons. First,
it delivers a simple closed form for bank-specific loan demand (5). Not only does this facilitate
computation (see Appendix B), but – more importantly – it also yields a simple structural equation
which we can map to the data in order to obtain an empirical estimate of the critical relationship
parameter ϕ (see Section 4.2.2). Second, it delivers a single sufficient statistic – the effective interest
rate R̃(µ) from equation (7) – which summarizes the key economic forces driving aggregate outcomes
in the model. As we show in Appendix A.3, though, the same central economic forces still hold under
a more general specification of adjustment costs.

Macroeconomic models of customer capital typically feature constant elasticity of substitution
(CES) preferences that feature the relationship intensity or level of customer capital as a preference
shifter within the CES aggregator, e.g. Gilchrist et al. (2017). While feasible, a CES specification
raises some issues in our framework. First there is a matter of interpretation, as what is being
aggregated is not utility over consumption of goods and services but rather loan dollars. Second, the
CES with customer capital as a preference shifter still features a constant price-elasticity of demand,
which does not vary with the intensity of the relationships. We derive the demand system under
CES preferences in Appendix A.4.

One way to address the second concern is to aggregate loans across banks using the more general
Kimball (1995) aggregator, which allows for a price-elasticity of demand that varies both with price
and relationship intensity. As we show in Appendix A.5, the main drawback of this specification is
that the resulting bank-specific demand is no longer linear or log-linear and therefore not amenable
to direct estimation, which is one of the main advantages of our framework.12

Credit risk In our model, all loans are risk-less. We abstract from borrower credit risk for two
main reasons. First, most firms in the sample that we use to calibrate the model have very low
default risk (the median 1-year probability of default in our sample is of 0.73%). Second, default
risk would complicate the model substantially by making it harder to aggregate outcomes for the
borrower across banks. This assumption is not innocuous, as default risk would significantly affect
banks’ pricing decisions, interacting with their own state-dependent discount factors arising from
equity issuance costs. In particular, it has been shown that ongoing relationships between banks
and firms may distort pricing incentives and generate instances of overlending or insurance provision
by the bank to the firm (see, for example, Faria-e-Castro et al. (Forthcoming)). To account for the
fact that the model does not feature credit risk, all of our estimation exercises either include explicit
controls for default risk, or factors that subsume this risk (such as firm-time fixed effects).

12Additionally, the Kimball (1995) specification does not solve the conceptual issue of aggregation of dollar values.
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Customer capital in bank liabilities Our model also abstracts from broader definitions of bank
customer capital, particularly its accumulation on the liability side of the balance sheet through de-
posit relationships. For example, Drechsler et al. (2017) argue that imperfect competition in deposit
markets is a key factor that modulates the transmission of monetary policy. Polo (2021) expands on
this idea and develops a quantitative macroeconomic model where banks accumulate customer capi-
tal in deposit markets, showing that this amplifies monetary policy shocks. An interesting extension
of our model would feature customer capital accumulation on both sides of the balance sheet, and
how the two relate to each other (i.e., whether they are substitutes or complements).

4 Mapping the Model to the Data

We parameterize our model in three steps. First, we assign values externally (i.e. outside the solution
of the model) to standard parameters in the macroeconomics and banking literature. Second, we
directly estimate our model’s unique relationship lending parameters – the adjustment cost ϕ and
the persistence parameters ρq and ρs – from the micro-data using a semi-structural approach. Third,
we jointly estimate the remaining parameters so that the model’s stationary equilibrium matches a
series of relevant banking industry moments. We now describe each of these steps in detail. The full
parameterization of the model is summarized in Table 3.

4.1 Externally set parameters

We set nine parameters externally. The risk-free quarterly discount price q implies an annualized
risk free rate of rann = 2%, in line with recent macroeconomic data. We set the interest rate on
deposits qd to be consistent with this risk-free rate and an annualized liquidity premium of 17 bps
(van Binsbergen et al., 2022). The capital requirement is χ = 8%, in line with current capital
requirements for large bank holding companies in the US. Since all exit is exogenous in the model,
we set the bank exit rate equal to the historical average quarterly bank exit frequency, 1−π = 0.72%.
We set total returns to scale to be consistent with a profit share of 5%, a capital share of 0.4, and
a labor share of 0.6. The user cost of capital is set to be consistent with an annual interest rate of
2% and depreciation rate of 7%. Finally, we normalize the wage rate w to imply a marginal factor
cost of one and the steady state level of aggregate TFP A = 1.

4.2 Directly estimated parameters

Our model features three parameters that are not standard in models of banking and financial
frictions: the cost of adjusting relationships, ϕ, and the parameters governing the persistence of
relationships at the bank-level, ρq and ρs. We directly estimate these parameters on micro data
using the relevant model demand equations. In particular, we use loan-level data from the Federal
Reserve’s FR Y-14Q data to estimate the equation for bank-specific loan demand in (5) with an
instrumental variables approach and obtain an estimate for ϕ. We then infer series for bank-level
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relationships by aggregating the residuals of that estimated equation at the bank level, and use these
series to obtain estimates for ρq and ρs. We now describe the data and the procedure in detail.

4.2.1 Data and sample selection

We use the cleaned Y-14 loan-level dataset described in Section 2 as the starting point to construct
a “relationship panel” at the firm-BHC-quarter level, where the quantity of credit ℓfbt is defined as
the total value of loans outstanding of firm f owed to BHC b at quarter t, and the interest rate rfbt
is the average rate on those loans, weighted by utilized loan value.13 After all sample restrictions,
our final panel runs from 2013Q1 to 2022Q2 and includes 3.361 million observations, for 242,568
distinct firms and 41 distinct BHCs.

4.2.2 Estimating adjustment costs using bank-level loan demand

To estimate ϕ, we take advantage of the fact that this parameter appears in the bank-specific demand
curve (5). Given data on loan quantities and interest rates, we treat the unobservable relationship
intensity as a residual, and estimate this equation using linear regression. In particular, we estimate
a specification of the following type:

ℓfbt
Lft

= β(rfbt − rft) + αft + αb + ufbt (19)

where Lft ≡
∑

b ℓfbt is total borrowing by a particular firm across all banks, and rft ≡
∑

b
ℓfbt
Lft

rfbt

is the average interest rate paid by a particular firm across all banks, weighted by the borrowing
amount. The goal therefore is to regress the loan share of each bank within a given firm on the
spread between the interest rate charged by the bank to that firm and the average rate paid by
the firm. We include firm-time fixed effects αft to capture fluctuations in overall credit demand by
the firm that are unrelated to the characteristics of its relationship with different banks, and we
use bank fixed effects αb to control for time-invariant bank-level characteristics, such as different
business models. An estimate ϕ̂ can then be retrieved from the estimated slope coefficient, given an
externally set value for q, i.e. ϕ̂ = −q/β̂.

The main challenge to estimating equation (19) directly is that it is a demand curve, and thus
OLS estimates suffer from the classical problem of simultaneity bias. We address this issue by
constructing an instrument for bank-specific credit supply shocks following Amiti and Weinstein
(2018). Specifically, we first estimate the following regression

rfbt − rft = γft + γbt + vfbt (20)

where γft is a firm-time fixed effect and γbt is a bank-time fixed effect. The idea is that the firm-time
fixed effect controls for any factor that is related to the demand for credit, while the bank-time fixed

13We also impose some additional restrictions that are aimed at eliminating observations that are likely errors: we
drop all loans with interest rates equal to zero or above 50%, as well as loans for which the size of the commitment
is non-positive, or the utilized quantity is larger than the commitment.
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effect absorbs all variation that is related to the supply of credit, and is by construction orthogonal
to demand. We therefore use γ̂bt as a valid instrument for the credit spread rfbt − rft in (19).

Estimation results are reported in Table 1. The relatively low number of observations (compared
to the size of the full sample) is due to two factors: first, our identification strategy relies on multi-
bank firms, that is, firms that borrow from multiple banks, while the vast majority of firms in our
data borrow from one bank only. We elaborate on and address this issue below. Second, we estimate
(19) only on loans originated in the last 4 quarters. The model features one-period debt, and so the
firm can effectively adjust its demand for debt across banks every period. In reality, firms borrow
at many different maturities, and it is not clear that a firm will find it advantageous or even feasible
to constantly prepay debt that was contracted in the past. Older loans are likely to be priced at
rates that no longer reflect aggregate credit market conditions, and so including them could bias our
estimates in the direction of estimating a lower credit demand elasticity.

(1) (2) (3) (4)

rfbt − rft -13.850∗∗∗ -29.976∗∗∗ -11.924∗∗∗ -25.346∗∗∗

(4.015) (3.694) (1.651) (7.851)

Firm identifier TIN TIN ISL cell ISL cell
Observations 57,833 57,731 221,674 221,637
Firm-Quarter FE ✓ ✓ ✓ ✓

Bank FE ✓ ✓ ✓ ✓

Model OLS IV OLS IV
Standard errors in parentheses, clustered at the BHC level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Estimating ϕ using firm- and cell-level data

The first column reports the simple OLS results, while column (2) reports the estimation results
using the credit supply shock instrument. Both specifications include the full set of fixed effects. In
the instrumental variables specification the point estimate β̂ = −29.976 implies ϕ̂ = 0.0332.

One issue with our estimation method that also applies more broadly to the identification ap-
proach of Amiti and Weinstein (2018) is that it relies on firms that borrow from multiple banks in
order to isolate demand from supply effects. It is well documented across space and time that the
vast majority of firms borrow from a single lender; in our sample over 80% of firms maintain a rela-
tionship with a single lender. This means that our reliance on multi-lender firms for identification
precludes the use of the majority of our data. Degryse et al. (2019) address this issue by defining
borrowers at the industry-size-location level, instead of at the firm level. The identification assump-
tion is that the demand for credit should be relatively stable among firms of the same industry, size,
and location (I, S, and L). We apply their methodology and define “ISL cells” where industry is the
3-digit NAICS, location is the CBSA of the borrower’s address, and size is the borrower’s decile in
terms of total assets. This generates a total of 82,377 unique cells in our sample.

The results for this alternative estimation procedure are reported in columns (3) and (4) of Table
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(1) (2)
ℓfbt
Lft

0.773∗∗∗ 0.791∗∗∗

(0.012) (0.005)

sfbt−1 0.176∗∗∗ 0.141∗∗∗

(0.011) (0.004)

Firm identifier TIN ISL cell
Observations 36,694 134,274
R-squared 0.91 0.89
Quarter FE ✓ ✓
Bank FE ✓ ✓
Firm FE ✓ ✓

Bootstrapped standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Estimating ρ using firm- and cell-level data

1. This sample – now almost four times larger – yields a slightly larger coefficient (in absolute value):
the IV estimate for the slope parameter is β̂ = −25.346, which implies ϕ̂ = 0.0393.

4.2.3 Estimating the law of motion for relationships

Our strategy to estimate ρs and ρq, the coefficients of the law of motion for relationship intensity,
follows from the estimation of ϕ. Recall that we treat the relationship intensity term in the bank-
specific demand sfbt as a residual when estimating (19). The idea is to treat that residual as a
measure of relationship intensity and directly estimate the law of motion in (11) using OLS. We are
consistent with our procedure for estimating ϕ, and map the model to the data at the representative
firm-level. That is, defining α̂b + ûfbt ≡ sfbt, we use the residuals from (19) to directly estimate:

ûfbt = αt + αb + αf + ρq
ℓfbt
Lft

+ ρsûfbt−1 + νfbt

where αt, αb, αf are time-, bank-, and firm- fixed effects, respectively. The results for the estimation
are reported in column (1) of Table 2, while the results for the estimation using industry-size-location
cells are reported in column (2). We obtain ρ̂s = 0.178, ρ̂q = 0.771 when using firm-level data and
ρ̂s = 0.141, ρ̂q = 0.791 when using ISL cells. The standard errors reported in these tables are
bootstrapped, to correct for the fact that these specifications include generated regressors.

4.3 Jointly estimated

4.3.1 Parameters and targets

The remaining parameters are jointly estimated so that the model matches a series of targets from
the data, given the externally set and directly estimated parameters. These parameters and target
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moments are summarized in Panel C of Table 3. The working capital parameter κ determines the
level of overall loan demand given the firm’s production parameters and output. Therefore, this
parameter is informed by the level of business debt relative to total output, which averages 71.5%
for the U.S. economy. The intensity of loan demand also helps determine how much market power
banks have. Since this is a key element of our model, we also target banks’ average net interest
margin. Because our model has no default, and risk premia are an important component of loan
spreads and therefore of net interest margins, we target a “no-default” net interest margin which
filters out default risk premia from loan spreads. To construct this measure, we use Y-14 data
to regress interest rates on new loans (originated in the last 4 quarters) on the originating bank’s
reported estimate for the 1-year probability of default. We then sum the constant and the residual,
and call this the “zero-default interest rate”. We compute the average zero-default interest rate for
each bank in our sample, weighted by loan size, and subtract the average interest expense on deposits
computed from the Call Reports. This measure averages 1.8% in our sample period.

The remaining three parameters describe the idiosyncratic shocks to bank net worth and the
costs of equity financing. We assume that the shocks to bank net worth follow an AR(1) process
with mean z = 0, persistence ρz, and standard deviation of innovations σz.14 We model smooth but
convex costs of issuing equity by using a piece-wise linear cost function

ψ(e) =

e(1 + ψ) if e < 0

e if e ≥ 0

The parameters ρz, σz, and ψ, then, are closely related to the financing choices banks make, and
so we discipline them with moments of the data describing these choices. Given the costs of issuing
equity and the relative cheapness of deposits, banks generally prefer to finance using deposits, and
so our model replicates the high average leverage of 92% we observe in the banking sector. Since the
capital requirement is close to binding for most banks, then, they generally respond to idiosyncratic
shocks either by retaining earnings or issuing new equity. We ensure realistic behavior along the
former dimension by targeting the net dividend payout rate of 5.8%, and the latter by targeting the
gross equity issuance rate of 1.1% (both scaled by total net worth).

4.3.2 Solving the model

Since internally calibrating the parameters described above requires iteratively solving the model for
a range of potential parameter values, and since computing our model requires several non-standard
steps, we describe our solution algorithm at a high level before proceeding. Appendix B contains a
more detailed, formal description of our computational algorithm.

The main complication in solving for a stationary equilibrium is that equilibrium is described not
by a small vector of aggregate prices, but by the entire joint distribution of prices and relationship.

14That is, we assume z′ = ρzz + (1− ρz)z + εz, where εz ∼ N (0, σz). This shock process is discretized over a grid
of size Nz = 21 using the Adda-Cooper method.
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Description Value Target / Reason Data Model

Panel A: Externally Assigned Parameters
rann Annualized risk-free rate 2% Quarterly discount price q = (1 + rann)

− 1
4

νann Deposit liquidity premium 0.17% Quarterly deposit price qd = (1 + rann − νann)
− 1

4

χ Capital requirement 8% Current US bank regulation
π Bank survival rate 0.9928 Quarterly bank exit rate of 0.72%
α Capital share 0.38 Profit share of 5%, capital share of 0.4
η Labor share 0.57 Profit share of 5%, labor share of 0.6
w Wage rate 4.41 Normalization
uc Ann. user cost of capital 9% 2% interest plus 7% depreciation rate
A Aggregate TFP 1 Normalization

Panel B: Directly Estimated Parameters
ϕ Lending share adj. costs 0.0362 Average of estimates, Section 4.2.2
ρq Mkt. share impact on rels. 0.782 Average of estimates, Section 4.2.3
ρs Persistence, relationships 0.159 Average of estimates, Section 4.2.3

Panel C: Internally Calibrated Parameters
κ Working capital constraint 0.755 Business debt to GDP ratio 71.5% 71.6%
ψ Equity issuance cost curvature 0.11 Gross equity issuance / NW 1.1% 1.1%
ρz Persistence of net worth shocks 0.262 Net dividend payouts / NW 5.8% 3.7%
σz Variance of net worth shocks 0.00264 Average net interest margin 1.8% 1.5%

Average bank leverage 92.0% 91.5%

Table 3: Summary of calibration

Notes: Firm leverage and business debt to GDP are sourced from the Flow of Funds. The leverage moment
corresponds to corporate firms. Gross equity issuance and net dividend payout rates are computed following Baron
(2020). The net interest margin is computed using Y-14Q interest rate on new loans (originated in the last four
quarters), residualized from firm 1-year probability default, and deposit expense data from the Call Reports. All
moments are averaged between 2009Q1 and 2020Q3.

However, given guesses of the distribution of banks over idiosyncratic states, m(x), and bank pricing
policy functions, gq(x), we can use the consistency condition (18) to infer the implied joint distribu-
tion of prices and relationships µ(q, s). Given this distribution, we can compute the demand-relevant
summary statistics R(µ) and R̃(µ), which are the necessary inputs to bank-specific and aggregate
loan demand according to equations (5) and (6). Finally, we can use these implied demand curves
to solve for updates of banks’ optimal policies, which in turn deliver an implied update to the initial
guess of the distribution of banks. This procedure can be repeated until convergence on both policy
functions and the distribution in order to obtain a stationary equilibrium.
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5 Model Mechanics and the Role of Relationships

In this section, we use the cross-section of our baseline economy and several variants to explain
the key mechanisms in our model of relationship lending. The analysis in this section provides the
underpinnings for understanding how relationship lending alters aggregate dynamics, which is the
focus of the next section.

Model variants Throughout our quantitative analysis, we focus on two main versions of the
model: (i) the baseline, whose calibration was described in the previous section; (ii) a competitive
version of the model where banks take market interest rates as given and choose how much to lend.
Details of this second economy are presented in Appendix A.6. In this model, the lack of adjustment
costs in the borrower’s problem removes any meaningful notion of relationships. This implies a single
equilibrium lending rate is taken as given by all banks. Banks then choose ℓ′ directly, and a bank’s
state is fully described by (n, z). The competitive version of the model feature banks with much
lower static market power since they face an infinite price elasticity of loan demand at each date.

In order to understand the economic forces at play, we also report results for two other variants
of the model: (iii) a “low elasticity” version, where the loan share adjustment cost ϕ is greater
than in the baseline, and so the elasticity of demand with respect to the spread is lower and banks
have more market power; and (iv) a “low punishment” version in which ρq → 0 so that banks face
the same static loan demand elasticity implied by the estimated ϕ, but do not sever relationships
by increasing prices as much as in the baseline model.15 Table 4 summarizes key cross-sectional
statistics across these different specifications of the model.

5.1 How do lending relationships shape industry-level and aggregate outcomes?

Loan rates decrease as competition increases. Panel A of Table 4 presents statistics on
interest rates and loan quantities. At the highest level, this panel confirms unsurprising results
about competition in our model environment. The effective interest rate R̃ varies sharply with
the degree of competition, dropping around 34.4% in the competitive version of the model. Lower
effective interest rates raise loan volumes by 4.3% relative to the baseline model. Raising banks’
static market power in the low elasticity economy increases effective interest rates by 37.4%. When
banks’ static market power remains unchanged but becomes less sensitive to pricing decisions in the
low punishment economy, effective interest rates increase by 15.6%. These movements along the
demand schedule result in commensurate decreases in total loan volumes in these two economies.

The next three rows decompose these differences using the three components of R̃ from equation
(7). The bulk of the difference arises from higher average interest rates: banks in the baseline econ-
omy exercise their market power by charging higher rates across the board. The positive covariance

15For completeness, the low elasticity version of the model has ϕ = 0.0724, double the baseline value for this
parameter, and the low punishment version of the model has ρ̂q = 0.078, one-tenth the baseline value. When ρq is
changed to ρ̂q, ρs is also changed to ρ̂s so that S has the same value as in the baseline economy; that is, ρ̂s =

S−πρ̂q
πS

,
and reducing ρq implies increasing ρs.
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level % diff rel to baseline
baseline comp. low elas. low pun. comp. low elas. low pun.

(i) (ii) (iii) (iv) (ii) (iii) (iv)

Panel A: pricing and lending

effective IR (pp, ann.) R̃(µ) 3.29 2.16 4.52 3.81 -34.36 37.43 15.64
= average rate R(µ) 3.26 2.16 4.44 3.36 -34.36 36.36 3.20
+ covariance term Cµ(r, s) 0.05 - 0.10 0.49 - 102.1 910.8
+ variance term Vµ(r) -0.01 - -0.02 -0.05 - -23.14 -280.8

loan-weighted avg. IR 3.28 2.15 4.51 3.76 -34.27 37.51 14.56
loan volume L′(µ) 0.26 0.27 0.25 0.25 4.25 -4.38 -1.86

Panel B: banking industry moments

average net worth 0.023 0.022 0.022 0.023 -4.84 -1.50 0.72
std dev, net worth 0.005 0.010 0.004 0.008 105.0 -10.13 63.55
std dev, relationships 0.143 - 0.128 0.412 - -10.59 187.0

share of switches (pp) 1.34 4.15 0.86 2.96 209.4 -36.00 121.0

corr, net worth and relationships 0.795 - 0.765 0.894 - -3.83 12.42
corr, net worth and spread 0.002 - 0.068 0.306 - 3286 15192
corr, relationships and spread 0.123 - 0.191 0.391 - 55.90 218.5

Table 4: Cross-sectional and aggregate results across model variants

Notes: In Panel A, all pricing moments are expressed in annualized net percentage points. In Panel B, all net
worth objects are computed using total beginning-of-period net worth, n+ z. See Appendix A.7 for a description of
the “share of switches” metric.

between relationship intensity and interest rates behaves similarly, but with a smaller magnitude:
banks with stronger relationships can afford to charge higher rates for a given loan volume.16 The
covariance term is notably large (49 bps, or 12.8% of the total effective interest rate) for the low
punishment model: in this case, not only are banks with stronger relationships inclined to charge
higher rates, but the greater persistence in relationships induces a more unequal bank distribution.
Finally, there is a small attenuation effect arising from interest rate dispersion: greater variance
in loan rates provides more scope for borrowers to substitute into cheaper borrowing. This effect,
however, is quantitatively small across model specifications.

Relationships compress the distribution of bank net worth. Panel B of Table 4 focuses
on moments related to the distribution of financial capital (net worth) and relationships in the
banking industry. Net worth is both slightly higher on average and less dispersed in the baseline
economy than in the competitive economy. Figure 3 plots the partial distributions of net worth and

16Of course, this effect is absent in the perfectly competitive economy, which has no notion of relationships.
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Figure 3: Distributions of the endogenous state variables across models

Notes: Panels (a) and (b) plot the partial cumulative distribution functions for total beginning-of-period net worth
(n+ z) and relationships (s), respectively. Average net worth for each model is presented in Table 4. The net worth
distributions for the competitive and nearly competitive models effectively lie on top of each other. The average
relationship intensity, represented by the black line in panel (b), is common across models by construction. Panel (c)
depicts the joint distribution of net worth and relationships for the baseline model by plotting the average
relationship intensity at each percentile of the net worth distribution, plus or minus one standard deviation of the
mean at that net worth percentile.

relationships, and the joint distribution of net worth and relationships in the baseline model. Note
that the latter two objects are not defined for the competitive economy. In particular, Figure 3(a)
shows that this compression of the net worth distribution combines two main forces. First, bank
market power generates a lower optimal lending scale: banks ration quantities to keep markups
high, as is standard in models of imperfect competition. Thus banks tend to cluster at a higher
level of net worth in the more competitive economies, i.e. the biggest concentration of bank mass in
the competitive model is to the right of its analog for the baseline model. Counteracting this first
effect, though, is the fact that it takes longer for banks to accumulate net worth in the competitive
economy. Since each unit of lending is less profitable, the “life cycle” of net worth tends to have a
much flatter profile in the more competitive economies (shown in Panel (c) of Figure 6 below and
discussed later in this section). Correspondingly, there are far more banks with net worth below the
“long run” level in competitive economy.

The low static elasticity economy features slightly lower average, even more compressed (lower
standard deviation) net worth than the baseline. This show that the effects of competition on the
overall level of net worth are not monotonic. This is because there are two main effects at play:
on one hand, higher profitability per unit of lending induces higher net worth. On the other hand,
more profitable lending means banks are better able to smooth dividends in the face of idiosyncratic
uncertainty. Better insurance allows them to operate with lower levels of net worth, and this latter
effect dominates as ϕ becomes large enough. Varying the degree of dynamic market power instead,
as in the low punishment economy, yields slightly larger dispersion, reversing which of these two
potentially offsetting effects dominates. On the one hand, greater persistence of lending relationships
means that banks have incentives to accumulate a lot of net worth to lend large quantities at high
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Figure 4: Steady state loan pricing policies

Notes: Panel (a) plots the first and second moments of the pricing policies (expressed as annualized percentage
point spreads over the average interest rate) conditional on a given level of net worth over the equilibrium
distribution of banks for the baseline model. Variation in pricing at each level of n comes from dispersion in s and z.
Panels (b) and (c) plot sample pricing policy functions (expressed in the same units as in panel (a)) over the
equilibrium distribution of net worth and relationships for the baseline and competitive economies. Percentiles for
each line are from the respective equilibrium distribution for each model variant. Panels (b) and (c) each fix z = 0,
the median level, and s or n at the median level from the baseline economy.

spreads. On the other hand, the dominance of the banks with strong relationships in this model
makes it very hard for smaller banks to compete and grow, and so there is a long left tail of smaller
banks in this case. The first effect dominates, though, and net worth is 0.72% higher on average in
the low punishment model, relative to the baseline economy.

Table 4.B also contains measures of the extent to which the borrower switches between lenders in
the model. Since the firm borrows from all banks, we define “switching” to account for adjustment
of the loan portfolio along the intensive margin as well as the extensive. That is, we define a
switch as an instance where a firm’s borrowing from a given bank in a given bank exceeds the firm’s
borrowing from that bank in the prior period. We then scale the total volume of switching loans
by total loan volume to obtain the percentage metric reported in the table (see Appendix A.7 for
the explicit formulation of this metric). The share of total lending from switches in the baseline
model is 1.34%. The competitive economy features much more switching. Constrained lenders in
this economy cut loan supply sharply because they cannot raise interest rates and rely on their
relationships to prop up lending. Since aggregate lending remains constant in steady state, this
implies greater switching. Unsurprisingly, the low elasticity economy features less switching than
the baseline, as switching is now more costly. Interestingly, the low punishment economy features
almost twice as much switching as the baseline economy. This stems from the fact that lenders with
strong relationships charge higher rates, inducing more borrower substitution. Due to the increased
persistence of relationships, however, this increased substitution has only a small impact on banks’
ability to maintain simultaneously high spreads and loan volumes.
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Financial and relationship capital are complements. The last rows in Table 4.B present
correlations between the key state variables and interest rate spreads. In each of the less competitive
models, there is a strong positive correlation between net worth and relationships (79.5% in the
baseline). This is highlighted further in Figure 3(c), which depicts the joint distribution of net
worth and relationships in the baseline economy. Overwhelmingly, small banks in terms of financial
capital have weaker relationships. While relationship strength increases across the entire net worth
distribution, this rise is especially sharp over the bottom quartile of the distribution.

In our baseline model, the correlation between net worth and spreads is close to zero, while
the correlation between relationships and spreads is positive. These results combine two effects.
First, as shown in Figure 4(b), less capitalized banks charge higher spreads in order to escape their
financial constraints by lending small amounts very profitably. In the face of costly equity issuance
and a capital requirement which constrains deposit financing, banks with low net worth cut lending
by raising rates. Second, banks with weak relationships tend to price extremely competitively –
even below market, in the sense that the spread r − R < 0 – in order to build up relationships for
the future, as shown in Figure 4(c). As relationships strengthen, banks can sustain lending above
market interest rates.

In isolation, these forces would lead the correlation between spreads and net worth (relationships)
to be negative (positive). These forces are tempered, however, by the strong positive correlation
between net worth and relationships described above. That is, the banks who are financially con-
strained and would like to charge high spreads tend to be the very same banks who have weak
relationships and therefore would like to charge low spreads. These two effects roughly offset each
other across the distribution, as highlighted in Figure 4(a), which plots the joint distribution of net
worth and spreads in the baseline model.

How do changes in the competitive landscape alter these effects? With more market power (static
or dynamic), constrained banks are able to charge higher interest rates while sustaining similar levels
of lending. This naturally strenghtens the correlation between relationships and spreads, but also
strengthens the correlation between net worth and spreads.

Our model, then, sheds additional light on the nature of financial constraints in banking. Mea-
suring banks’ net worth provides information on banks’ pricing and lending decisions, but the degree
to which these policy functions are actually elastic with respect to net worth, and the levels of net
worth at which this elasticity manifests, can vary considerably across relationship intensities and
with the competitive landscape.

Ultimately, we find that financial and relationship capital are complements. These two types of
capital are complements if more net worth delivers more value to a bank with stronger relationships.
The most direct measure of this is the cross-partial of the value function, ∂2V

∂n∂s , which should be
positive. Figure 5 provides two lenses into this across the range of n and s for our baseline model:
panel (a) shows the marginal value of net worth, while panel (b) shows the marginal value of
stronger relationships across the state space. Complementarity implies that the former is increasing
in relationship intensity, while the latter is increasing in net worth; both are confirmed in the figure.
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(a) Marginal value of net worth (b) Marginal value of relationships

Figure 5: Complementarity of financial and relationship capital

Notes: Panels (a) and (b) plot numerical approximations to the slope of the bank value function with respect to net
worth and relationships, respectively, for z fixed to the median level in the baseline model. The ranges for n and s
are chosen to be those with positive mass of banks according to the distributions in Figure 3.

Relationships shape banks’ life cycles. Figure 6 investigates the life cycle of bank beginning
from entry across all versions of our model. In all cases, new banks start out with no net worth
(panel (c)), which does not allow for much lending (panel (a)). In the less competitive baseline
and low punishment economies, banks optimally price below market (panel (b)) in order to build
relationships (panel (d)). Given the persistence of relationships in the low punishment case, the
required period of pricing below market is both longer and less profitable (except in the very early
dates). By contrast, in the competitive model, banks simply price at the market rate and increase
loan volume gradually alongside net worth. Notably, the results in Figure 6 suggest that there is
a “sweet spot” with regard to the accumulation of net worth: in the competitive economies, low
profit margins across all banks make it hard for banks to accumulate financial capital, while in the
less competitive low punishment economy the intensity with which small, weak relationship banks
must compete against more established banks renders profits similarly low. As banks accumulate
financial and relationship capital, they lend more while increasing their spreads.

5.2 Empirical validation: the evolution of spreads over a relationship

The key novelty in our framework is the link between persistent lending relationships and banks’
pricing decisions. In order to have confidence in our model’s predictions about how relationships
affect aggregate outcomes, then, we must first provide evidence that our model delivers pricing
implications given changes in relationships that are in line with the data.

Recall that Figure 2 shows the average difference in interest rates for loans from new banks
(“switches”) compared to loans from banks with existing relationships. The key insights from this
figure are that: (i) switching loans are priced relatively favorably immediately upon and in the first
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Figure 6: Average bank life cycle across model variants

Notes: For each version of the model, we simulate paths of T = 40 periods for N = 10, 000 entrant banks with
initial states n = 0, s = 0, and z drawn from the ergodic distribution Γ(z). Each plot presents averages of the
indicated metrics across the N banks for each date t = 1, ..., T .

year following the switch (negative relative spreads); and (ii) this pattern reverses in the second year
after the switch (positive relative spreads).

Does our model deliver similar patterns? To address this question, we simulate a panel of banks
drawn randomly from the stationary distribution and study how they behave after a share δs of
their relationship capital s is destroyed. Holding the rest of the banks’ states fixed, this reduction in
relationship capital accounts for differences in lending practices solely attributable to differences in
relationships, as in our empirical analysis. We choose δs to match the average initial drop in spreads
immediately upon switching of 5.38 bps.17

Figure 7 plots the difference between switching and non-switching loan spreads for our baseline
17It is perhaps natural to think of a true “switch” as the case δs = 100%, i.e. eliminating any past relationships,

in this experiment. This implementation, however, is far too strong given our representative borrower structure: a
bank with s = 0 has faces extremely small loan demand under equation (5), and so will price aggressively to build
it up (recall the life cycle analysis above. Empirically, both the incumbent and switching lenders have a portfolio of
borrowers, and so the drop in relationship intensity we implement must be more marginal.
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Figure 7: Differences in spreads from switching relative to non-switching loans

Notes: This figure plots the differences in spreads between switching and non-switching loans for several model
variants and in the data. For detailed descriptions of the construction of this figure, see Section 2.2 for the data and
Section 5.2 for the model.

model and several variants, with the empirical relationship reproduced as the black line and shaded
region. Our baseline model matches the dynamics of spreads in the data quite closely along several
dimensions. In both model and data, banks price below market upon switching, but then steadily
charge slightly above-market spreads thereafter. Our model correctly captures – both qualitatively
and in terms of magnitudes – the gradual increase in spreads after the “honeymoon phase” following
the switch; over the entire three-year span depicted in Figure 7, the relative increase in hovers
between 5 and 10 bps as in data.

When we repeat this exercise for the low elasticity and low punishment models, the comparison
with the data is far less favorable. While both match the initial drop in spreads by construction,
they fail to match the data in the subsequent periods in different ways. In the low elasticity model,
banks leverage high switching costs to take immediate advantage of their newly captive borrower,
charging much higher spreads than we observe in the data. Spreads remain persistently above
what we observe in the data over the life of the relationship. In the low punishment case, the
initial increase in spreads is lower, but the profile does not level off over the horizon of the figure.
This is because need more time to accumulate sufficient relationship capital to viably increase rates
without inducing substitution. Once it is high enough, charging higher spreads does not erode the
relationship nearly as much as it does in our baseline model.
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6 Aggregate Dynamics

We now analyze how lending relationships shape how the economy responds to aggregate shocks. In
this section, we consider three types of aggregate shocks: (i) a “financial crisis”, where every bank
experiences a proportional decline in their own net worth; (ii) a negative credit supply shock that
affects the deposit funding cost of banks, q̄d, and (iii) a negative shock to loan demand. We assume
that these are one-time, unanticipated shocks.

6.1 Net worth or “financial crisis” shock

Figure 8 plots the response of aggregate variables to a negative aggregate shock to bank net worth.
We assume that the net worth of every bank unexpectedly declines by 5%: we motivate this shock as
an unexpected loss in profitability arising from other business lines within the bank, such as mortgage
lending and/or MBS holdings during the 2007-08 financial crisis. Panels (a) through (e) present the
effects of the shock on the effective interest rate, total lending, total net worth, total deposits, and
net dividend payouts, respectively, for the baseline and competitive economies.18 While qualitatively
the responses are similar between the two economies (in terms of the signs), there are important
quantitative differences between the two.

Panels (a) and (b) show that the increase in the effective interest rate and corresponding decrease
in lending are larger on impact in the competitive economy, but also less persistent. Panel (c) shows
that this has implications for the behavior of aggregate net worth: while the fall is quantitatively
similar across models, the recovery is considerably slower for the baseline economy.

In the baseline economy, banks exploit the complementarity between customer and financial cap-
ital: faced with binding constraints, they expend customer capital and raise interest rates. Banks,
however, internalize that interest rates cannot be raised substantially above what other banks are
charging, as otherwise this will lead to a faster depletion of customer capital. Since interest rates
rise by relatively less, lending also falls by relatively less, but this results in more protracted recapi-
talization dynamics.

In the competitive economy, the shock triggers a standard financial accelerator effect: banks
become constrained and cut back lending, and interest rates rise substantially in equilibrium. This
is the mechanism underlying “fast recapitalizations” and the lack of endogenous persistence in many
macro-finance models with lenders that are subject to a collateral constraint. The significant rise
in interest rates and/or drop in asset prices at the time of the shock generates large ex-post returns
that allow intermediaries to recapitalize themselves extremely fast. The sharp decrease in lending
on impact induces a sudden deleveraging in the competitive model that is promptly reversed, as
shown in panel (d).

Since the recapitalization is slower in the baseline model, the effects of the shock on interest rates
and lending are also felt for longer, even if the response on impact is more moderate than that in
the competitive lending economy.

18Appendix C.4 contains the same results for the low elasticity and low punishment economies. These results are
qualitatively similar to the baseline, for the most part.

29



Figure 8: Aggregate shock to bank net worth

Notes: This figure plots the paths of key aggregate variables in units of percent deviations from steady state, or
date 0 (except for the effective interest rate, which is units of percentage point differences). The aggregate shock
considered reduces each bank’s net worth by 5% at date 1.

6.2 Funding cost or “monetary policy” shock

Figure 9 considers a negative shock to q̄d, such that the bank cost of funding increases from 2%
(annualized) to 4%. Unlike the one-time net worth shock, this is persistent with ρ = 0.5. This is one
way of modeling a monetary policy shock and studying its transmission in the context of our model.
In this case, both economies feature similar responses in terms of quantities and price of lending,
with effective interest rates rising in both cases, and aggregate quantities of credit falling. Thus
both models feature similar pass-through of funding costs to lending rates, and generate a standard
monetary policy transmission mechanism to quantities of credit, which in turn directly affects real
activity via the binding working capital constraint.

The two models generate very different responses of net worth, however, with bank net worth
falling in the competitive model but rising in the relationship lending model. In the relationship
lending model, banks do not want to contract their lending by as much so as to preserve relationship
capital. However, one of the two sources of funding for lending has become more expensive, so
lending falls by relatively less and banks switch to using relatively more retained earnings than
deposits to fund that lending. This induces an increase in net worth.

In the competitive case, the mechanism is more standard: since relationship capital is not a
concern, banks do not need to keep lending as elevated as in the baseline case, and so they simply
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Figure 9: Aggregate shock to cost of funding

Notes: This figure plots the paths of key aggregate variables in units of percent deviations from steady state, or
date 0 (except for the effective interest rate, which is units of percentage point differences). The aggregate shock
considered raises the cost of funding from 2% to 4% at date 1, with the funding costs recovering with a persistence
of 0.5.

deleverage, cutting both net worth and deposits (and paying out dividends, as shown in panel (e)).
This is also why lending falls by relatively more than in the baseline, and correspondingly, interest
rates rise by more.

This allows us to conclude that while the pass-through of monetary policy to credit market
variables is similar in the two economies, the degree of competition in the banking industry can
generate stark differences in how aggregate bank net worth reacts to a tightening of monetary
policy, which has natural implications for financial stability.

6.3 Loan Demand Shock

Finally, Figure 10 plots the effects of a contraction in loan demand, which we model as a 1% drop
in TFP with a persistence of 0.5. While total lending responds similarly across models, the effective
interest rate dynamics are quite different. In the competitive model, the mechanism is similar to
the one described above: faced with less loan demand, banks delever, reducing both net worth and
deposits while paying out dividends. With lending relationships, banks actively try to maintain
their relationship capital, which induces them to cut interest rates more. Consequently the quantity
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Figure 10: Aggregate shock to loan demand

Notes: This figure plots the paths of key aggregate variables in units of percent deviations from steady state, or
date 0 (except for the effective interest rate, which is units of percentage point differences). The aggregate shock
considered lowers TFP by 1% at date 1, recovering with a persistence of 0.5.

of lending falls relatively less. This cut in interest rates has implications for net worth, which falls
less than in the competitive case. In the case of a credit demand shock, the degree of competition
in the banking system has clear implications for the aggregate effects of shocks on variables such as
interest rates and quantities of credit, as well as on the extent to which bank capitalization reacts
to the shock, which in turn matters for financial stability considerations.

7 Conclusion and Directions for Future Research

This paper presents a quantifiable, estimable framework with which to evaluate the aggregate con-
sequences of lending relationships. Our model environment combines standard features from the
literature on heterogeneous banks subject to financial constraints with two novel elements: (i) loan
sourcing adjustment costs on the part of borrowers; and (ii) a fully internalized law of motion for
relationships on the part of banks. These novel elements yield a tractable but rich notion of relation-
ships. Importantly, the way we specify our model simultaneously facilitates both direct estimation
of the novel relationship parameters of interest and efficient computation, despite the richness of
heterogeneity and financing choices within the banking sector.
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Quantitatively, we present three primary results. First, we show that our baseline model matches
the profile of interest rate spreads over the life of a bank-borrower relationship that we observe in
the data. Notably, our model appears to get both the static and dynamic components of the market
power which arises from relationships right, as model variants which vary either element struggle to
match this empirical profile. Second, we show that financial and relationship capital are complements
at the bank level, with banks expending one of the types of capital to recover from negative shocks
to the other. Third, we show that the degree of bank competition matters for the transmission of
different types of shocks to the financial system. Relationship capital slows down the recovery of
bank net worth after a financial crisis, generating endogenous persistence in variables such as interest
rates and quantities of lending. It also generates opposite implications for how the capitalization of
the banking system reacts to a monetary policy tightening: while bank net worth falls in response
to an increase in bank funding costs in a competitive system, it rises in the presence of relationship
capital. Finally, the presence of relationship capital amplifies the response of interest rates to credit
demand shocks, but attenuates that of quantities.

Our analysis suggests several promising directions for future research, and we provide some ex-
amples of these directions here. First, two trends have played out simultaneously in the U.S. financial
sector over the past several decades: the consolidation of the commercial banking industry and the
rise of alternative financial intermediaries such shadow banks and online lenders (“fintech”). On the
one hand, consolidation would suggest that relationships matter even more, while the competition
from outside the traditional banking sector could plausibly counteract this effect. Our framework is
well-suited to measuring the aggregate impacts of these trends along this transition path. Second,
the fact that different countries’ banking sectors are structured in ways very different from the U.S.
might imply different interactions between relationship capital and financial frictions than those
described in the present paper, which was intended to model the U.S. banking sector. For example,
it is well-documented that the Canadian banking sector is considerably more consolidated than the
U.S. financial sector. A “discrete bank” version of our framework could be used to examine how
relationships interact not only with financial constraints, but also with standard sources of market
power arising from industry concentration. We leave these and other avenues for future research.
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Appendix for “A Quantitative Theory of Relationship Lending”

A Model Appendix

A.1 Proof of Proposition 1: Loan Demand System

First note that cost-minimization implies an optimal capital-labor ratio that allows us to express
optimal labor as a function of the choice of capital

n =
uc

w

η

α
k (A.1)

This implies that total costs can be written as uck + wk = uckα+η
α . Begin by placing multipliers

λ ≥ 0 on constraint (3) and ζ ≥ 0 on constraint (4) and taking first order conditions in the borrower’s
problem (2) – (4):
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With the envelope condition Wℓ(L;µ) = −dµ(q, s), we obtain the optimality conditions:

• for capital demand:
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Applying the binding working capital constraint (3) again, using (A.1) and (A.2) gives aggre-
gate loan demand:

L′ = κ(α+ η)
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where all we need to do is solve for λ.

• for bank-specific loan demand:19
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Recognizing that equation (A.4) holds for all (q, s), we can integrate the right hand side over
19A useful result here is if X = E[x], then E[x/X] = E[x]/X = X/X = 1, and similarly

V
( x

X

)
= E

[( x

X
− E

( x

X

))2
]
= E

[( x

X
− 1

)2
]
= E

[( x

X

)2
]
− 2E

( x

X

)
+ 1 = E

[( x

X

)2
]
− 1

i



the distribution µ to obtain:

ζ = q

∫
dµ(q, s)

q
+ ϕ

∫
qℓ′(q, s)

L′ dµ(q, s)− ϕ

∫
sdµ(q, s) + ϕ(S − 1) = qR (A.5)

Plugging (A.5) back into (A.4) and rearranging terms gives us our bank-specific loan demand
equation (5).

• for total loan demand:

1 + λ− ζ =
ϕ

2

∫ (
qℓ′(q, s)

L′ − s+ S − 1

)2

dµ(q, s)− ϕ

L′

∫
qℓ′(q, s)

(
qℓ′(q, s)

L′ − s+ S − 1

)
dµ(q, s)

= ϕ

∫ (
qℓ′(q, s)

L′ − s+ S − 1

)(
1

2

(
qℓ′(q, s)

L′ − s+ S − 1

)
− qℓ′(q, s)

L′

)
dµ(q, s)

= −ϕ
2

[∫ (
qℓ′(q, s)

L′

)2

dµ(q, s)−
∫
(s− S + 1)2dµ(q, s)

]

= −ϕ
2

[
Vµ

(
qℓ′

L′

)
− Vµ(s)

]
(A.6)

We can use (5) to simplify (A.6):

Vµ

(
qℓ′

L′

)
− Vµ (s) = Vµ

(
1 + S − s− q

ϕ
(r −R)

)
− Vµ(s)

= Vµ(s) + Vµ

(
q

ϕ
(r −R)

)
+ 2Cµ

(
s,− q

ϕ
(r −R)

)
− Vµ(s)

=

(
q

ϕ

)2

Vµ(r)− 2
q

ϕ
Cµ (s, r) (A.7)

This delivers the aggregate demand equation (6) since we now have

1 + λ− qR− ϕ(1− S) = −ϕ
2

[(
q

ϕ

)2

Vµ(r)− 2
q

ϕ
Cµ(s, r)

]

=⇒ λ = q

[
R+ Cµ(s, r)−

1

2

q

ϕ
Vµ(r)

]
− 1

where the term in brackets is equal to R̃ from equation (7) in the main text.

A.2 Proof of Proposition 2: Bank Financing and Lending

Since ψ′(e) > 0, the budget constraint (9) must bind, and so we can eliminate e from the set of
control variables. Mechanically, conditions (11), (12), and (13) must bind with ℓ(q, s) given by (5),
and so we may further eliminate s′, ℓ′, and n′. This leaves us with a two-control-variable problem
(dropping explicit dependence on µ to ease notation):

V (n, s, z) = max
q,d′

ψ
(
qdd′ + z + n− qℓ(q, s)

)
+ qπE

[
V
(
n′(q, d′, s), s′(q, s); z′

)]
subject to [λ] qdd′ ≤ (1− χ)qℓ(q, s)
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where it is understood that n′(q, d′, s) = ℓ(q, s) − d′ and s′(q, s) = ρq
qℓ′(q,s)

L′ + ρss (we keep these
general now for flexibility of specification). Taking first order conditions, we obtain:

∂qℓ

∂q
ψ′(e) = qπE

[
Vn

(
n′, s′, z′

) ∂n′
∂q

+ Vs
(
n′, s′, z′

) ∂s′
∂q

]
+ λ(1− χ)

∂qℓ

∂q
(A.8)

qdψ′(e) = −qπE
[
Vn

(
n′, s′, z′

) ∂n′
∂d′

]
+ λqd (A.9)

The relevant envelope conditions are:

Vn (n, s, z) = ψ′(e) (A.10)

Vs (n, s, z) = q
∂ℓ

∂s

(
λ(1− χ)− ψ′(e)

)
+ qπE

[
Vn(n

′, s′, z′)
∂n′

∂s
+ Vs(n

′, s′, z′)
∂s′

∂s

]
(A.11)

In addition, the ancillary derivatives for accumulating state variables are

∂n′

∂q
=
∂ℓ

∂q
and

∂n′

∂s
=
∂ℓ

∂s
and

∂n′

∂d′
= −1 (A.12)

∂s′

∂q
=
ρq
L′
∂qℓ

∂q
and

∂s′

∂s
=
qρq
L′

∂ℓ

∂s
+ ρs (A.13)

Turning first to financing results, combining equations (A.12) and (A.10) with (A.9) yields

λ = ψ′(e)− q

qd
πE

[
ψ′(e′)

]
(A.14)

If the capital requirement is slack, then the marginal equity issuance cost today is equal to the
appropriately discounted expected marginal equity issuance cost tomorrow; otherwise, these costs
are relatively steep today.

Before considering the pricing policy, it is useful to simplify the envelope condition for relationship
intensity (A.11). Using (A.12) and (A.10) and switching to sequential notation, we can first write

Vs,t = qt
∂ℓt+1

∂st

λt(1− χ)− ψ′(et) +
q

qt
πEt

[
ψ′(et+1)

]
︸ ︷︷ ︸

≡ Πt

+ qπ
∂st+1

∂st
Et (Vs,t+1)

where the term in brackets represents the static flow profits associated with an additional unit of
lending defined in (15). From equation (5) we know that ∂ℓ′

∂s = L′

q which implies that ∂s′

∂s = ρq + ρs,
so this can be simplified further:

Vs,t = Lt+1Πt + qπ(ρq + ρs)Et (Vs,t+1) (A.15)

Iterating on equation (A.15) yields

Vs,t = Lt+1Πt + qπ(ρq + ρs)Et [Lt+2Πt+1 + qπ(ρq + ρs)Et+1 (Vs,t+2)]

= ...

=

∞∑
i=0

(qπ(ρq + ρs))
i Lt+i+1Πt+i (A.16)
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Next, combine equations (A.8), (A.12), (A.13), (A.10), and the simplifications above to obtain
a modified version of the pricing optimality condition

∂qℓ

∂q
ψ′(e) = qπ

∂ℓ

∂q
E[ψ′(e′)] + qπ

ρq
L′
∂qℓ

∂q
Et

[
V ′
s

]
+ λ(1− χ)

∂qℓ

∂q

We can simplify by dividing through by ∂qℓ
∂q , which involves recognizing that since ∂qℓ

∂q = q ∂ℓ
∂q + ℓ,

∂ℓ
∂q

∂qℓ
∂q

=

∂qℓ
∂q

−ℓ

q

∂qℓ
∂q

=
1

q

(
1− ϵ−1(qℓ, q)

)
where ϵ(qℓ, q) denotes the elasticity of total loan demand, qℓ, with respect to loan price, q, so that
ϵ−1 is the inverse elasticity. Then, combining this expression and the simplified envelope condition
(A.16), we obtain the expression from (14):

Πt + qπρqEt

[ ∞∑
i=0

(qπ(ρq + ρs))
i Lt+2+i

Lt+1
Πt+1+i

]
= ϵ−1(qtℓt+1, qt)

q

qt
πEt

[
ψ′(et+1)

]
(A.17)

The last part of the proof is to give the form of the inverse elasticity term in equation (16). To
derive this, simply compute the derivative of qℓ with respect to q in equation (5):

∂qℓ

∂q
= −L′ q

ϕ

(
−1

q

)2

=
q

ϕ

L′

q2
=⇒ ϵ(qℓ, q) ≡

∂qℓ
∂q

qℓ
q

=
1

q

q

ϕ

L′

qℓ

A.3 General adjustment cost function

Assume the quadratic adjustment cost function in (2) is replaced by:

L′
∫
ϕ

(
qℓ′(q, s)

L′ , s

)
dµ(q, s)

where ϕ(·) is a generic penalty function that allows for a more general relationship between relative
relationship intensity and loan share. Note that this specification still embeds that total adjustment
costs scale with the total size of the loan portfolio.

Extending the same analysis from Appendix A.1 shows that this specification gives rise to the
modified demand system:

−q (r −R) = ϕ1

(
qℓ′(q, s)

L′ , s

)
−
∫
ϕ1

(
qℓ′(q, s)

L′ , s

)
dµ(q, s)︸ ︷︷ ︸

≡Φ1

(A.18)

L′ = κw

[
Aα

w

1

1 + Λ̃(µ)κ

] 1
1−α

(A.19)

where Λ̃(µ) = qR+

∫
ϕ

(
qℓ′(q, s)

L′ , s

)
dµ(q, s)︸ ︷︷ ︸

≡Φ

−
∫ (

qℓ′(q, s)

L′ − 1

)
ϕ1

(
qℓ′(q, s)

L′ , s

)
dµ(q, s)− 1

Equation (A.18) is the analog of (5) in the main text; likewise, equation (A.19) is the analog of (6) in
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the main text. The former equation still takes the form of specifying loan demand as a function of a
pricing penalty term and the marginal cost of relationship adjustment. Likewise, the latter specifies
aggregate demand as a function of average interest rates, a term describing aggregate adjustment
costs (akin to the covariance term in (7)), and marginal adjustment costs. In particular, assuming
that ϕ1 is invertible, we can write the demand function as

qℓ′(q, s)

L′ = (ϕ−1
1 ) (Φ1 − q̄(r −R), s)

This demand function satisfies the same properties as the one that arises from quadratic adjustment
costs as long as ϕ−1

1 is increasing in both of its arguments. That is, demand rises with more
relationship intensity and/or with lower interest rate spreads.

Note the change of notation from R̃(µ) in the main text. This is because Λ is actually the
multiplier on the working capital constraint, which measures the excess borrowing costs. The analog
of R̃ in this context would be such that it solves Λ̃ = qR̃− 1, or

R̃ = R+ q̄−1

[
Φ− Φ1 +

∫
ϕ1

(
qℓ′(q, s)

L′ , s

)
qℓ′(q, s)

L′ dµ(q, s)

]
A.4 CES loan demand

This subsection describes the model with CES loan demand. The firm’s problem can be written as

W (L;µ) = max
n,k,L′,{ℓ′(q,s)}

Akαnη − wn− uck + L′ −
∫
ℓ(q, s)dµ(q, s) + qE

[
W (L′;µ)

]
subject to κ(wn− uck) ≤ L′

L′ ≤
[∫

(sθqℓ′(q, s))
ε−1
ε dµ(q, s)

] ε
ε−1

Note that we include the relationship term s directly in the CES for loan demand, in the spirit of
how Gilchrist et al. (2017) interpret customer capital in product markets. θ is a parameter that
affects how the relationship intensity influences the contribution of borrowing from a particular firm
to total borrowing. This is interpreted as a preference shifter in the customer capital literature.

Define R̃CES as a habit-weighted geometric mean of interest rates:

R̃CES ≡ 1[∫
(sθq)ε−1dµ(q, s)

] 1
ε−1

(A.20)

Then, we can show that the two-tier demand system becomes

qℓ′(q, s)

L′ = sθ(ε−1)

(
1/q

R̃CES

)−ε

L′ = κw̄

[
Aα

w(1 + κ(q̄R̃CES − 1)

] 1
1−α

As it is well know, the price-elasticity of demand with respect to R = 1/q is equal to −ε, and
therefore does not vary either with price or the intensity of relationships.

We can then take logs of the individual demand function to write an estimable version:
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log

(
qℓ′(q, s)

L′

)
= −εr + ε log R̃CES + θ(ε− 1) log s

where we use the fact that log(1/q) ≃ −r. The above condition can be estimated using the techniques
described in the main body of the text. In this case, while R̃CES is no longer an average spread, it
is subsumed in firm-time FE.

A.5 Kimball loan demand

This subsection describes a specification for loan demand following Kimball (1995). The firm’s
problem can be written as

W (L;µ) = max
n,k,L′,{ℓ′(q,s)}

Akαnη − wn− uck + L′ −
∫
ℓ(q, s)dµ(q, s) + qE

[
W (L′;µ)

]
subject to κ(wn− uck) ≤ L′

1 =

∫
G

(
sθ
qℓ′(q, s)

L′

)
dµ(q, s)

where G is a general aggregator. We follow Dotsey and King (2005) in assuming that this aggregator
takes the form

G(x) =
ω

1 + ων
[(1 + ν)x− ν]

1+ων
ω(1+ν) + 1− ω

1 + ων

Note that this aggregator becomes a standard CES when ν = 0, with ω = ε−1
ε . The relevant effective

price in this case is defined as

R̃K =

[∫ (
1

sθ
1

q

) 1+ων
1−ω

dµ(q, s)

] 1−ω
1+ων

(A.21)

This allows us to write the bank-specific demand function as

qℓ′(q, s)

L′ =
1

1 + ν

1

sθ

( 1

sθ
R

R̃K

)ω(1+ν)
1−ω

+ ν

 (A.22)

where R ≡ 1/q. The firm’s aggregate credit demand is still given by an expression of the form

L′ = κ(α+ η)

[
A
(
α
uc

)α ( η
w

)η
1 + λκ

] 1
1−α−η

where λ is now given by a more involved expression:

λ = R̃Kq

∫ {[
(1 + ν)

1

sθ
qℓ′(q, s)

L′ − ν

] 1−ω
ω(1+ν) 1

sθ
qℓ′(q, s)

L′

}
dµ(q, s)− 1

The Kimball demand function has advantages and disadvantages over the CES specification.
The main advantage is that unlike in the CES case, the price-elasticity of demand under Kimball
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(1995) is no longer constant and varies with both price and relationship intensity,

ϵ(qℓ,R) =
ω(1 + ν)

1− ω

(
1
sθ

R
R̃K

)ω(1+ν)
1−ω

(
1
sθ

R
R̃K

)ω(1+ν)
1−ω

+ ν

One disadvantage, however, is that the bank-specific demand function (A.22) no longer has a func-
tional form that is amenable to direct estimation with linear methods. In particular, the right-hand
side depends on the bank-specific interest rate, the relationship intensity term, and on the aggregate
time-varying object R̃K , and these terms cannot be disentangled with either linear or log-linear
transformations of this expression.

A.6 Model with perfect competition

The perfectly competitive version of our model corresponds to the case in which there are no ad-
justment costs; that is, the case when ϕ = 0 in the borrower’s objective function (2). In this case,
the state variable s is completely redundant. Furthermore, there is no reason for the borrower to
diversify its loan portfolio, and in fact bank-specific demand is not well-defined and so in equilibrium
all banks must charge the same loan price, Q = R−1.

Correspondingly, the problem of the borrower is simply to choose labor, capital, and total loan
demand per the following problem:

W (L;R) = max
n,k,L′

Akαnη − wn− uck +
L′

R
− L+ qE

[
W (L′;R)

]
(A.23)

subject to κ(wn+ uck) ≤ L′

R
(A.24)

The objective function (A.23) is modified relative to the original objective (2) to reflect that there are
no loan sourcing considerations in this model and there is only a single equilibrium loan price. As a
result, the loan sourcing constraint (4) is obviated in this version of the model. Finally, observe that
the working capital constraint (A.24) is the same as the original constraint (3), with the modification
that discount prices are accounted for directly on L′ rather than on the individual ℓ′. The solution
to this problem yields the same aggregate demand curve as in equation (6), with the modification
that the effective interest rate R̃(µ) is replaced by the single equilibrium interest rate R:

L′(R) = κ(α+ η)

[
A
(
α
uc

)α ( η
w

)η
1 + κ(qR− 1)

] 1
1−α−η

(A.25)

The problem of the banks is similarly stripped down:

V (n, z;R) = max
e,ℓ′≥0,d′,n′

ψ(e) + qπE
[
V
(
n′, z′;R

)]
(A.26)

subject to qℓ′ + e ≤ n+ z + qdd′ (A.27)
χqℓ′ ≤ qℓ′ − qdd′ (A.28)
n′ = ℓ′ − d′ (A.29)

The only change in the objective function in (A.26) relative to the baseline (8) is the elimination
of the state variable s from the value function and the removal of the loan price q from the set of
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control variables. Constraints (A.27), (A.28), and (A.29) are identical to their counterparts from
the baseline model, (9), (10), and (13), respectively. Since banks do not face bank-specific demand
curves and the state variable s has no meaning in this version of the model, constraints (12) and
(11) become irrelevant in this case.

A stationary recursive competitive equilibrium for this version of the model is defined in the
standard way. The main differences relative to the equilibrium definition from the main text are
that now borrower optimality specifies only aggregate demand, and the distributional consistency
condition is replaced by the simple market clearing condition that aggregate demand equals aggregate
supply, integrated across the entire equilibrium distribution of banks.

L′(R) =

∫
ℓ′(n, z)dm(n, z) (A.30)

A.7 Switching metric

In the model, we say that a “switch” has occurred if a bank lends more in the current period than
it did in the last period. We do not count reductions in lending as switches since this would imply
double-counting: in a stationary equilibrium, any bank’s increase in loan volume must be offset by
another bank’s reduction. The total volume of switches integrates the increase in lending across
all banks in the distribution. It is not necessary to track individual banks; instead, we can use the
state-specific policy functions and the implied endogenous transitions over bank states to compute
the total volume of switches among banks in a given state today based on the evolution of their
states tomorrow. We compute:

switch volume = π

∫
N×S×Z

max
{
gqℓ′(n

′, s′, z′)− gqℓ′(n, s, z), 0
}
f(n′, s′, z′|n, s, z)dm(n, s, z)︸ ︷︷ ︸

net changes in volume from incumbents

+(1− π)

∫
Z
gqℓ′(0, 0, z)gℓ(0, 0, z)dΓ(z)︸ ︷︷ ︸

volume from entrants

(A.31)

where the transitions between bank states are summarized by the density:

f(n′, s′, z′|n, s, z) = 1
[
n′ = gℓ(n, s, z)− gd(n, s, z)

]
1

[
s′ = ρq

gqℓ′(n, s, z)

L′(µ)
+ ρss

]
Γ(z′|z)

The first term in (A.31) accounts for the increases in lending coming from incumbent banks. The
second term accounts for entrants; since entrants did not lend last period, we count their entire loan
volume as switches. Note that for entrants we do not integrate across the entire distribution, but
rather just the entrant-specific distribution, which reflects that n = 0, s = 0, and z is drawn from
the ergodic distribution implied by the transition matrix Γ(z′|z). Then, we simply scale the volume
of switches by total loan volume, reporting the following metric in Table 4 in the main text:

switch share =
switch volume

L′(µ)
(A.32)
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B Computational Appendix

B.1 Bank problem

1. Given a current guess of V , compute expected V (over z) for all (n, s, z):

V (n, s, z;µ) = qπ
∑
z′

Γ(z, z′)V
(
n, s, z′;µ

)
(B.1)

before entering in loop to compute policies. This saves on calculations later.

2. Fix (n, s, z). Implement nested golden section with the q choice as the outer loop and the
deposit choice d′ as the inner loop.

(a) Identify the highest loan price at which the resulting loan demand can be serviced while
satisfying the capital requirement (qmax(n, s, z;µ)) and the lowest price such that the loan
demand implied by (5) is non-negative (qmin(s;µ)).20

qmin(s;µ) =

[
R(µ) +

ϕ

q
(1− S + s)

]−1

qmax(n, s, z;µ) = min

{
qd,

[
R(µ) +

ϕ

q

(
1− S + s− n− ψ(e)

χ

)]−1
}

where e is a program parameter representing the lowest reasonable dividend (i.e. the
highest amount of equity issuance, which most eases the capital requirement).

(b) For each candidate q, compute the implied loan demand ℓ(q, s;µ) and next period cus-
tomer capital s′(q; s, µ) via (5) and (11), respectively. Then use golden section to find the
optimal level of deposits d′ ∈ [0, dmax(q; s, µ)], where

dmax(q; s, µ) = (1− χ)
qℓ′(q, s;µ)

qd
,

that should be used to finance the implied loan quantity.

(c) Compute the implied net worth n′(q, d′; s, µ) given the candidate policies via (13) and
compute the value associated with the current (q, d′) according to

v(q, d′;n, s, z, µ) = ψ
(
qdd′ + n+ z − qℓ(q, s;µ)

)
+ V

(
n′(q, d′; s, µ), s′(q; s, µ), z;µ

)
This step requires interpolation on n′ and s′.

(d) Compute w(q;n, s, z, µ) = maxd′ v(q, d
′;n, s, z, µ) in the inner loop and then TV (n, s, z;µ) =

maxq w(q;n, s, z, µ) in the outer loop.

B.2 Steady state

1. Begin with a guess of bank policies g0(x), the distribution of banks over states m0(x), and the
bank value function V0(x).

20It may be desirable to solve for policies in terms of spreads, τ(q;µ) = r(q)−R(µ), rather than prices directly.
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2. Use the consistency condition (18) to obtain the joint distribution of prices and relationships
µ(q, s) implied by (g0,m0). Given the implied µ, use equation (7) to compute the effective
interest rate R̃(µ) and the average interest rate R(µ).

3. Solve for banks’ optimal policies and updated value function under the current distribution µ
and current value function V0(x), g1(x;µ, V0) and V1(x;µ, V0) (using the algorithm described
above). Note that it is not necessary to iterate to convergence on the value function / decision
rules at this step.

4. Compute the distribution of banks over idiosyncratic states next period implied by the policies
in the step above, m1(x; g1, µ); that is, iterate just once on equation (17).

5. Assess convergence of the distribution of banks over states and state-specific bank policies and
values; that is, compute the convergence metric

ε = max
{
max
x

|g1(x)− g0(x)| ,max
x

|m1(x)−m0(x)| ,max
x

|V1(x)− V0(x)|
}

If ε < ε (the pre-specified tolerance), then the model is solved; otherwise, update

g0(x) = ψgg0(x) + (1− ψg)g1(x;µ)

m0(x) = ψmm0(x) + (1− ψm)m1(x; g1, µ)

V0(x) = ψV V0(x) + (1− ψV )V1(x; g1, µ)

and return to step 2. We set ψg = ψm = ψV = 0.

B.3 Perfect foresight transitions / impulse responses

The maintained assumption throughout these steps is that both the initial and terminal steady
states are known, that the initial distribution of banks over idiosyncratic states may be computed
directly given the initial steady state, and that bank policies may be solved backwards given the
value function implied by the terminal steady state.

1. Update the initial distribution of banks over idiosyncratic states, m0(x), to reflect the incidence
of the shock being simulated.

2. Guess a sequence of aggregate prices {R̃0
t , R

0
t }Tt=1. A natural initial guess is that these prices

are equal to their steady state values at all dates t.

3. Using the terminal value function VT+1(x) and the path of aggregate prices computed in the
step above, solve backwards to obtain the sequence of bank policy functions G = {gt(x)}Tt=1.

4. Given the sequence of policy functions G, compute the implied sequence of distributions of
banks over idiosyncratic states, M = {mt(x)}Tt=1.

5. Use the consistency condition to compute the implied sequence of joint distributions of loan
prices and relationship intensities, {µt(q, s)}Tt=1. Then, compute the implied sequence of ag-
gregate prices {R̃1

t , R
1
t } consistent with this sequence of distributions.

6. Assess the convergence of the aggregate prices: that is, compute the metric

ε = max
{
max

t

∣∣∣R̃1
t − R̃0

t

∣∣∣ ,max
t

∣∣R1
t −R0

t

∣∣}
x



If ε < ε, the pre-specified tolerance metric, then the transition path has been solved. Otherwise,
update the guesses of the aggregate price sequence according to

R̃0
t = ψR̃R̃

0
t + (1− ψR̃)R̃

1
t

R0
t = ψRR

0
t + (1− ψR)R

1
t

and return to step 2.

C Additional Quantitative Results

C.1 Spread Policies across Model Economies

Figure C.1: Steady state loan pricing policies

Notes: Panels (a) and (b) plot sample pricing policy functions over the equilibrium distribution of net worth and
relationships, respectively, for the indicated model variants. Percentiles for each line are from the respective
equilibrium distribution for each model variant. Panels (a) and (b) each fix z = −0.0025. Panel (a) fixes s, and panel
(b) fixes n, at the 25th percentile of the equilibrium distribution of the relevant variable in the baseline economy.

C.2 Lending policies across model economies

Figure C.2 is the analog of Figure 4 from the main text, except we show lending policies directly
(expressed in units of relative loan volume, qℓ′

L′ ), rather than spreads. Panel (a) shows that the joint
correlation between loan shares and net worth follows the pattern for relationships and net worth,
a direct by-product of the accumulation process (11). Panel (b) shows that lending policies are
highly elastic with respect to net worth in the bottom quarter of the distribution in the baseline; for
higher levels of net worth, these policy functions are essentially flat. By contrast, for the competitive
economy, relative loan volumes increase almost linearly in net worth over the entire range of the net
worth distribution.

C.3 Decomposing the drivers of bank behavior

As highlighted in the optimal pricing condition (14), banks’ pricing policies involve both the level of
market power a bank has and how the bank allocates the rents it obtains from that market power
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Figure C.2: Steady state lending policies

Notes: Panel (a) plots the first and second moments of the lending policies (expressed as loan volume relative to
the average) conditional on a given level of net worth over the equilibrium distribution of banks for the baseline
model. Variation at each level of n comes from dispersion in s and z. Panels (b) and (c) plot sample lending policy
functions (expressed in the same units as in panel (a)) over the equilibrium distribution of net worth and
relationships, respectively, for the indicated model variants. Percentiles for each line are from the respective
equilibrium distribution for each model variant. Panels (b) and (c) each fix z = −0.0025. Panel (b) fixes s, and panel
(c) fixes n, at the 25th percentile of the equilibrium distribution of the relevant variable in the baseline economy.

over time. How large are these two forces?
In order to address this question, in this subsection we construct a partial equilibrium decom-

position of banks’ loan pricing decisions. Specifically, given a solution to the baseline economy –
and therefore given levels of aggregate loan demand, L′(µ), and an average interest rate, R(µ), from
the bank-specific demand curve (5) –, we consider two alternative sets of bank policies. First, we
consider policies chosen as though banks have no static market power, i.e. ϕ = 0. Second, we
compute optimal policies under the extreme scenario in which relationship intensity is fixed through
time at the bank level, i.e. ρq = 0. The results of this analysis are shown in Figure C.3 below.

Since banks in the baseline economy have market power, they lend less than in the competitive
economy, as highlighted in panel (a). This difference is especially strong for the least financially
constrained banks, for whom the standard quantity rationing force is the strongest; in contrast,
banks with low net worth generally like to lend at low volumes in both economies.

Panel (b) shows that the forces for the low ρq economy work in the other direction: given the
increased persistence of relationships in this economy, banks generally would like to lend more than
in the baseline model. Panel (c) reveals that this is achieved by charging significantly below-market
interest rate spreads. Again, for the same reasons as in the competitive case, the differences between
policies across models are the largest for the most financially unconstrained banks.
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Figure C.3: Decomposition of equilibrium lending policies

Notes: Panels (a) and (b) plot the average and standard deviation of the difference between the loan volume in the
baseline economy and the loan volume in the nearly competitive and low punishment economies, respectively. In
each case, for each level of net worth in the equilibrium distribution of the baseline economy, we compute the
average and standard deviation in loan volume differences across the alternative economies. Panel (c) performs a
similar analysis for spreads for the low punishment model; there is no need to compare spreads for the competitive
model, since these would be zero by definition, and so the levels plotted in Figure 4 would also be the differences.

C.4 Response to Aggregate Shocks across Model Economies

Figures C.4-C.6 plot the responses of selected variables to shocks to the aggregate shocks we consider
in the main text, including also the responses for the low elasticity and low punishment economies.

Figure C.4: Aggregate shock to bank net worth
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Figure C.5: Aggregate shock to cost of funding

Figure C.6: Aggregate shock to loan demand
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